13,703
edits
Changes
no edit summary
** [https://www.biorxiv.org/content/10.1101/2020.02.08.939314v2 "Domestication reprogrammed the budding yeast life cycle," De Chiara et al (2020).]
** Genome analysis of 1800 isolates from all ''Saccharomyces'' species by [https://www.nature.com/articles/s41467-023-36139-2 Peris et al. (2023)] found that domesticated strains of ''S. cerevisiae'' displayed a higher rate of admixture (occurs when distinct lineages mix to create new genetic lineages) <ref name=Peris_2023" />.
* Whole genome sequencing of European farmhouse strains from Norway, Latvia, and Lithuania show that European farmhouse yeasts form their own group outside of the Beer 1 group (note that Belgian saison strains are not included in this group and are contained within the Beer 2 group). See [https://link.springer.com/article/10.1007/s00253-024-13267-3 this study by Preiss et al. 2024] and this layman's summary blog post by [https://www.garshol.priv.no/blog/436.html Lars Marius Garshol].
* Guinness yeast strains form their own mosaic (distinct genetic grouping) that is different than other Irish brewing strains (which are closely related to British brewing strains). Their closest related yeast is a Belgian ale strain that was used for "lagers" and was originally misidentified as lager yeast. The authors of the study that discovered this suggest that this Belgian strain originated from Dublin brewers. The two currently used Guinness yeast strains are very closely related to the original strains that were originally banked by Guinness: the 1903 Watling Laboratory Guinness yeast <ref>[https://www.nature.com/articles/s42003-023-05587-3 Kerruish, D.W.M., Cormican, P., Kenny, E.M. et al. The origins of the Guinness stout yeast. Commun Biol 7, 68 (2024). https://doi.org/10.1038/s42003-023-05587-3.]</ref>. See also [https://www.facebook.com/groups/MilkTheFunk/posts/7826465880714891/ this MTF post].