13,757
edits
Changes
m
no edit summary
==General Information==
The method of fermenting wort with only ''Brettanomyces'' was pioneered by Tomme Arthur from Pizza Port/Lost Abbey, and Peter Bouckaert from New Belgium in 2004 with their 100% ''Brettanomyces'' fermentented ''Mo' Bretta'', and Vinnie Cilurzo of Russian River with Sanctification later that same year <ref>[http://www.amazon.com/American-Sour-Beer-Innovative-Fermentations-ebook/dp/B00LV8IRRI/ref=dp_kinw_strp_1 American Sour Beers. Michael Tonsmeire. July 2014. Pg 189.]</ref>. Avery Brewing Co. and Jeff O'Neal from Ithica Beer Co. also produced early 100% ''Brettanomyces'' beers <ref>[https://youtu.be/IGzoh4brILA?t=20m59s Yakobson, Chad. Interview on Craft Commander. 12/20/2016. Retrieved 12/20/2016.] (~21 mins in)</ref>. This method was further popularized by Chad Yakobson's ''Brettanomyces'' Dissertation on the [http://web.archive.org/web/20240519121257/http://www.brettanomycesproject.com/dissertation/ Brettanomyces Project blog], and by his brewery, [[Crooked Stave Artisan Beer Project]]. While primary fermentation with ''Brettanomyces'' is a complex subject due to the wide range of characteristics of different species and strains of ''Brettanomyces'', it is believed that beer that is fermented with ''Brettanomyces'' in primary usually produces a surprisingly clean, lightly fruity beer (see Chapter 8 in ''American Sour Beers'' by Michael Tonsmeire for a full description of 100% ''Brettanomyces'' fermented beers). However, much of this belief was partly based on the misclassification of what is now referred to as "''Saccharomyces'' Trois". The issue of characterizing 100% ''Brettanomyces'' fermentations is further complicated by the fact that some sources of ''Brettanomyces'' also contain ''Saccharomyces'' or other unadvertised microbes. Furthermore, most ''Brettanomyces'' strains cannot fully ferment wort due to not being able to utilize maltose (see the [[Brettanomyces#Carbohydrate_Metabolism_and_Fermentation_Temperature|''Brettanomyces'']] wiki page and [http://web.archive.org/web/20240623083404/http://brettanomycesproject.com/dissertation/pure-culture-fermentation/impact-of-pitching-rate/ Chad Yakobson's Dissertation]).
Typical characteristics of ''Brettanomyces'' primary fermentations (these are generalizations, and may not be true for every strain):
* Not all strains can ferment maltose, which is almost 50% of the sugar composition of wort. These strains should be avoided for 100% ''Brettanomyes'' fermentations. See [[Brettanomyces#Carbohydrate_Metabolism|''Brettanomyces'' carbohydrate metabolism]] for more details.
* [http://web.archive.org/web/20240623083404/http://brettanomycesproject.com/dissertation/pure-culture-fermentation/impact-of-pitching-rate/ Chad Yakobson's thesis] showed that WLP645, WLP650, WLP653, WY5112, WY5526, and WY5151 were not able to attenuate wort more than 50% within 35 days (these were pure cultures). BSI Drie was the only strain tested that was able to attenuate wort at levels similar to brewers yeast. All strains that he tested were able to utilize maltose, however some less efficiently than others. More time may or may not have resulted in further attenuation. Contamination with another yeast is one explanation for why brewers are able ot use these cultures from labs to fully attenuate wort (Yakobson used purified isolates for this research).
* [https://www.facebook.com/groups/MilkTheFunk/permalink/1935201276508077/ Nick Mader of Fremont Brewing (2017 Master Brewers Conference Presentation)] observed that 100% BSI Drei fermentation resulted in around 77% attenuation (3.17°P final gravity), while co-fermentation with different pitch rates of a saison yeast resulted in around ~90% attenuation (~1.5°P final gravity). The esters were generally lower than when cofermented with the saison yeast, but ethyl decanoate (apple, brandy) was considerably higher with the 100% fermentation with BSI Drei. 4-ethyl phenol concentrations with 100% Drei were around the same as when cofermented with the saison yeast. See also [[Brettanomyces_and_Saccharomyces_Co-fermentation#Review_of_Scientific_Analysis|cofermentation with ''Saccharomyces'']].