Changes

Jump to: navigation, search

Glycosides

764 bytes added, 16:16, 6 September 2016
no edit summary
After being released from cyanogenic glycosides, HCN is highly toxic to animals. The human body is used to breaking down trace amounts of cyanide into the less toxic substance thiocyanate with an enzyme called rhodanese, which then leaves the body via urination <ref name="Gleadow_2014">[http://www.annualreviews.org/doi/full/10.1146/annurev-arplant-050213-040027 Cyanogenic Glycosides: Synthesis, Physiology, and Phenotypic Plasticity. Roslyn M. Gleadow and Birger Lindberg Møller. 2014.]</ref>. Although there are more than 3,000 plant species that are cyanogenic (a number of them cultivated by farmers perhaps because their cyanogenic properties deter animals from eating them), only a few parts of plants that are considered foods contain enough HCN from cyanogenic glycosides to be considered dangerous (generally, other forms of cyanide are considered more dangerous, such as from exposure to air or water that is polluted with cyanide) <ref name="CDC1">[http://www.atsdr.cdc.gov/toxprofiles/tp8.pdf Toxicology Profile for Cyanide. Agency for Toxic Substances & Disease Registry. July 2006. Retrieved 08/25/2016.]</ref>. The location of the cyanogenic glycosides and the enzymes that release them are often each located in different (or all) parts of plants, and those locations are diverse across species. In some plants, the cyanogenic glycosides are concentrated in the stems or leaves of the plant and not the seeds (e.g. sorghum, barley, and lima beans). In fruits sometimes the seeds contain concentrated amounts (e.g. black cherry pits), and other times in the fruit itself (e.g. ''Passiflora edulis''). In rosaceous stone fruits, cyanogenic glycosides are located in the seeds, but the beta-glucosidase enzyme that the plant uses to release HCN is located in the roots of the plant. The concentration of cyanogenic glycosides is generally higher in seedling plants compared to mature plants, however this is there are a few exceptions where this is the opposite (e.g. some ''Eucalyptus'' species, and lima beans).
Although rare, there have been a few reported deaths due to cyanide poisoning from foods containing cyanogenic glycosides. These reports include deaths from elderberry juice that was thought to contain stems and/or leaves (the stems and leaves contain much higher cyanogenic glycosides than the berries, and ripe berries by themselves are considered safe) <ref>[http://www.cdc.gov/mmwr/preview/mmwrhtml/00000311.htm Poisoning from Elderberry Juice -- California. CDC website. 1998. Retrieved 08/30/2016.]</ref>, apricot kernels (pits), choke cherry pits, and improperly processed cassava (a staple food in parts of North Africa) <ref name="who"></ref>. A lethal dosage of cyanide in humans is estimated to be around 1.52 mg per kilogram of body weight, with 0.56 mg per kilogram of body weight being the lowest recorded (although this lowest figure was obtained from a historical case when the measurements taken may not have been accurate) <ref>[http://www.atsdr.cdc.gov/toxprofiles/tp8.pdf Toxicology Profile for Cyanide. Agency for Toxic Substances & Disease Registry. July 2006. Pg 42. Retrieved 08/25/2016.]</ref>. High exposure can cause light-headedness, nausea, vomiting, stomach cramps, diarrhea, convulsions, harm to the brain and heart, comas, and death. Exposure to 0.05 mg of cyanide per kilogram of body weight per day for 15-364 days is considered to be the minimum accumulative cyanide exposure by the US CDC. Accumulative exposure can cause health risks, such as reproductive, respiratory, neurological, thyroid, and gastrointestinal issues <ref>[http://www.atsdr.cdc.gov/toxprofiles/tp8.pdf Toxicology Profile for Cyanide. Agency for Toxic Substances & Disease Registry. July 2006. Pg 21. Retrieved 08/25/2016.]</ref>. In some foods, such as marzipan and persipan (made from bitter apricot seeds), the processing of this food destroys the natural beta-glucosidase enzyme (which denatures at 75°C), leaving the flora in the human gut to break down the cyanogenic glycosides. Even if an abnormally large portion of marzipan or persipan is ingested, the lack of beta-glucosidase along with the high calories in the food acts as a slow release of cyanide into the human body which the body can deal with <ref>[http://link.springer.com/article/10.1007%2Fs00204-015-1479-8 Bioavailability of cyanide after consumption of a single meal of foods containing high levels of cyanogenic glycosides: a crossover study in humans. Klaus Abraham, Thorsten Buhrke, Alfonso Lampen. 2015.]</ref>.
Upon learning about cyanogenic glycosides, brewers often question the toxicity of cherry pits or apricot kernels in beer. Cherry pits have traditionally been used in [[lambic]] kriek beers in Belgium. However, the dilution of HCN from cherry pits in beer results in benign levels. Assuming full breakdown of these glycosides, and that none of the HCN boils off (25.6°C boiling temperature), levels of HCN introduced from cherry pits are too low to cause harm to adult humans. The EU regulates that alcoholic beverages cannot exceed 1 mg of HCN per ABV percentage (v/v%) per liter <ref>[http://ec.europa.eu/food/fs/sfp/addit_flavor/flav09_en.pdf COUNCIL DIRECTIVE of 22 June 1988 on the approximation of the laws of the Member States relating to flavourings for use in foodstuffs and to source materials for their production (88/388/EEC). The European Food Commission, Food Safety. Retrieved 08/26/2016</ref>. Luk Daenen, a glycoside researcher, calculated that for a 4% ABV alcohol beer, 4 mg of HCN per liter is allowed. With 200 grams of cherries per liter, and the pits being 10-14 grams of that weight, there is 22 - 30.8 amygdalin per liter of beer. Around 6% of the weight of amygdalin is converted into HCN. Assuming maximum extraction of HCN from the amygdalin glycoside, which is unlikely because the pits are not ground up when used in beer, this equates to 1.3 - 1.82 mg of HCN per liter of beer, which is less than the 4 mg of HCN per liter that the EU regulation states. Considering that ~42 mg of HCN is required to kill a person that weighs 70 kilograms (154 pounds), that person would need to drink around 23 liters of beer <ref name="daenen">[https://www.uclouvain.be/cps/ucl/doc/inbr/documents/presentation-luk-daenen.pdf "Use of beta-glucosidase activity for flavour enhancement in specialty beers," slideshow by Luk Daenen. 2012. Retrieved 08/26/2016.]</ref>. 350 mL of alcohol would kill a 70 kilogram adult <ref>[http://www.alcohol.org.nz/alcohol-its-effects/health-effects/alcohol-poisoning "Alcohol Poisoning". NZ Health Promotion Agency. Retrieved 08/26/2016.]</ref>. The amount of 4% ABV beer required to kill a 70 kg adult from alcohol poisoning is around 8.75 liters. Alcohol would kill such a person far before cyanide poisoning would become a concern. In general, the potential cyanide in most foods will become too dilute to have any health problems, however there might still be plants that are extremely high in HCN content that they should be avoided in beer.

Navigation menu