13,700
edits
Changes
no edit summary
There is a highly genetic diversity between strains of ''Brettanomyces'' species, both in a [http://www.diffen.com/difference/Genotype_vs_Phenotype genotypic and phenotypic] sense <ref name="Crauwels1">[http://link.springer.com/article/10.1007/s00253-015-6769-9 Comparative phenomics and targeted use of genomics reveals variation in carbon and nitrogen assimilation among different Brettanomyces bruxellensis strains. S. Crauwels, A. Van Assche, R. de Jonge, A. R. Borneman, C. Verreth, P. Troels, G. De Samblanx, K. Marchal, Y. Van de Peer, K. A. Willems, K. J. Verstrepen, C. D. Curtin, B. Lievens. 2015]</ref>. Not all species are capable of consuming the same types of sugars. For example, ''B. anomalus'' (aka claussenii) are generally able to ferment lactose, but ''B. bruxellensis'' is generally not. Different strains within the same species may not be able to ferment the same types of sugars <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1279884332039778/ Lance Shaner experiment comparing the growth of various ''Brettanomyces spp'' on different growth mediums. 04/07/2016.]</ref><ref name="ncyc_searchbrett">[https://catalogue.ncyc.co.uk/catalogsearch/result/?q=brettanomyces National Collection of Yeast Cultures. Search for ''Brettanomyces''. Retrieved 04/07/2016.]</ref>. For example, some strains are not able to ferment maltose, which is almost half the sugar content of wort <ref>[https://eurekabrewing.wordpress.com/tag/sugar/ "Sugar composition of wort". Eureka Brewing Blog. Jan 13, 2015. Retrieved 04/07/2016.]</ref>. Such strains would not be a good choice for [[100%25_Brettanomyces_Fermentation|100% ''Brettanomyces'' fermentation]].
The ability of a given ''Brettanomyces'' strain to ferment different types of sugars might be at least partially linked to its sourceof isolation. For example, a strain of ''B. bruxellensis'' isolated from a soft drink could not ferment the disaccharides maltose, turanose, or the trisaccharide melezitose, whereas all of the other ''B. bruxellensis'' strains isolated from beer and wine could ferment these disaccharides/trisaccharide. The beer strains, however, were unable to ferment cellobiose or gentiobiose, as well as arbutin and methyl-gluoside. The wine strains were able to ferment these disaccharides, perhaps because they were adapted to the environment in which they were isolated from (wine barrels) <ref name="Crauwels1"></ref>.
Currently, research into how well ''Brettanomyces'' strains ferment the trisaccharide maltotriose has not been explored much by science, however one study found that ''B. custersianus'' can ferment maltotriose. Another study found that all 7 strains of ''B. bruxellensis'' tested could ferment maltotriose, but not the trisaccharide raffinose. More investigation into this possibility is needed <ref>[http://www.asbcnet.org/events/archives/2015Meeting/proceedings/Pages/54.aspx Determination of sugar metabolism profiles of non-traditional yeasts in the Saccharomyces and Brettanomyces families. J. D. Cook, W. A. DEUTSCHMAN. ASBC Proceeding. 2015.]</ref><ref name="Crauwels1"></ref>. The below table is an example of the variety of sugar types that different strains/species of ''Brettanomyces'' banked at the [https://catalogue.ncyc.co.uk National Collection of Yeast Cultures] can ferment: