13,700
edits
Changes
no edit summary
====Monoterpenes and Glycosides====
Monoterpenes generally exist as aromatic and flavorful alcohols that tend to smell floral with low odor thresholds (100-400 ppb), and are present in plant material. These alcohols mostly consist of linalool (a major contributor to hop aroma <ref>[http://www.mbaa.com/brewresources/Pages/Linalool-in-Hops.aspx Linalool in Hops. MBAA. Stefan Hanke, University Weihenstephan, Germany. 2009.]</ref>), geraniol, nerol, and linalool oxides, but also includes other monoterpenes such as citronellol, alpha-terpineol, hotrienol, nerol oxide, myrcenol, the ocimenols, and other oxides, aldehydes and hydrocarbons. In wine (and probably sour beer), these alcohols bind with acids to create aromatic monoterpene ethyl esters and acetate esters, and can also be transformed into other types of monoterpenes by yeast metabolism <ref>[http://www.sciencedirect.com/science/article/pii/S0168160510006653 Monoterpene alcohols release and bioconversion by Saccharomyces species and hybrids. A. Gamero, P. Manzanares, A. Querol, C. Belloch. 2011.]</ref><ref name="Daenen2">[http://onlinelibrary.wiley.com/doi/10.1111/j.1567-1364.2008.00421.x/pdf Evaluation of the glycoside hydrolase activity of aBrettanomyces strain on glycosides from sour cherry (Prunus cerasus L.) used in the production of special fruit beers. Luk Daenen, Femke Sterckx, Freddy R. Delvaux, Hubert Verachtert & Guy Derdelinckx. 2007.]</ref>. Monoterpenes can also be odorless polyols, some of which can break down easily to produce pleasant aromas. For example, diendiol can break down into hotrienol (tropical, floral, fennel, ginger aroma <ref>[http://www.thegoodscentscompany.com/data/rw1374491.html "Hotrienol." The Good Scents Company. Retrieved 05/11/2016.]</ref>) and nerol oxide (green, vegetative and floral with a minty undernote <ref>[http://www.thegoodscentscompany.com/data/rw1001891.html "Nerol Oxide." The Good Scents Company. Retrieved 05/11/2016.]</ref>). While some monoterpenes are free within the plant material, around 2-8 times that amount are bound up in flavorless glycosides <ref name="Maicas">[http://link.springer.com/article/10.1007/s00253-004-1806-0/fulltext.html "Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: a review." Sergi Maicas, José Juan Mateo. May 2005.]</ref>. It is thought that some wine strains of ''Saccharomyces cerevisiae'' might be able to produce monoterpenes such as geraniol during fermentation in ways not related to beta-glucosidase activity <ref>[http://femsle.oxfordjournals.org/content/243/1/107.abstract De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. Francisco M. Carrau, Karina Medina, Eduardo Boido, Laura Farina, Carina Gaggero, Eduardo Dellacassa, Giuseppe Versini, Paul A. Henschke. 2005.]</ref>.
Glycosides are a very diverse group of non-volatile and flavorless molecules that generally encompass any molecule that has a sugar bound to a non-sugar molecule (thus separating them from polysaccharides). The sugar (monosaccharide or oligosaccharide) component of the molecule is known as the "glycone", and the non-sugar component is known as the "aglycone". By breaking the glycosidic bond of a glycoside, the aglycone component is released. The aglycone component of glycosides are often polyphenols or the floral monoterpene alcohols described above. Glycosides can be categorized based on their glycone (glucose vs fructose), type of glycosidic bond (α-glycosides or β-glycosides), or by their aglycone (alcoholic, anthraquinone, coumarin, cyanogenic, flavonoid, phenolic, aponins, steroidal/cardiac, steviol, or thioglycosides). Glycosides play important roles in living organisms, especially many types of plants which store glycosides in their tissue and then break the bond between the sugar and non-sugar aglycone when the aglycone is needed for certain biological functions <ref>[http://www.newworldencyclopedia.org/entry/Glycoside "Glycoside." New World Encyclopedia. Retrieved 05/06/2016.]</ref>. These include protecting cells from toxins in the plant and attracting insects via the fragrance of flowers <ref name="Winterhalter"></ref>.
Aglycones have been identified in many fruits and herbs such as grapes, apricots, peaches, yellow plums, quince, sour cherry, passion fruit, kiwi, papaya, pineapple, mango, lulo, raspberry, strawberry, and tea <ref name="Maicas">[http://link.springer.com/article/10.1007/s00253-004-1806-0/fulltext.html "Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: a review." Sergi Maicas, José Juan Mateo. May 2005.]</ref><ref name="Winterhalter"></ref>. They have been found in different parts of plants, including the green leafy parts, fruit, roots, rhizomes, petals, and seeds. Aglycones in plants are highly complex structures and very diverse, and their percentages can vary from crop to crop. In plants, these include terpenols, terpenes, linalool oxides, as well as other flavor precursors including various alcohols, norisoprenoids, phenolic acids and probably volatile phenols such as vanillin. In many cases of fruit, the amount of aromatic aglycones that are bound up in glycosides out number the amount that are free in a ratio of 2:1 to 8:1 <ref name="Maicas"></ref>. Aglycones that are bound up in glycosides tend to be more water soluble and less reactive once unbound than their the naturally free version. By providing enzymesthat break the glicosidic bond, discarded parts of plants (peels, stems, skins, etc.) have been used to produce natural flavorings from the remaining and abundant glycosides <ref name="Winterhalter">[http://link.springer.com/chapter/10.1007%2FBFb0102063 "Glycoconjugated aroma compounds: Occurrence, role and biotechnological transformation." Peter Winterhalter, George K. Skouroumounis. 1997.]</ref>.
====Beta-Glucosidase====