13,703
edits
Changes
m
no edit summary
Although the exact pathway is not known in ''Brettanomyces'' (several are proposed), the conditions for THP production are well documented. ATHP is produced by metabolizing the amino acid L-lysine, along with ethanol and a glucose or fructose molecule. Iron is also needed for THP production, although its exact role in biosynthesis is not known <ref name="Snowdon"></ref>. As with other amino acids, lysine is taken up by ''Saccharomyces'' during fermentation, and then released after fermentation. Levels of lysine fluctuate slightly throughout fermentation, but are generally high throughout a beer's lifetime <ref>[http://link.springer.com/article/10.1385/CBB:46:1:43 The α-aminoadipate pathway for lysine biosynthesis in fungi. Hengyu Xu, Babak Andi, Jinghua Qian, Ann H. West , Paul F. Cook. Sept 2006.]</ref><ref>[http://pubs.acs.org/doi/abs/10.1021/bi9829940 Lysine Biosynthesis in Saccharomyces cerevisiae: Mechanism of α-Aminoadipate Reductase (Lys2) Involves Posttranslational Phosphopantetheinylation by Lys5. David E. Ehmann , Amy M. Gehring , and Christopher T. Walsh. 1999.]</ref><ref>[http://onlinelibrary.wiley.com/doi/10.1002/j.2050-0416.2007.tb00249.x/abstract Elucidation of the Role of Nitrogenous Wort Components in Yeast Fermentation. C. Lekkas, G.G. Stewart, A.E. Hill, B. Taidi and J. Hodgson. May 2012.]</ref><ref>[http://www.sciencedirect.com/science/article/pii/S0308814699000710 Proteins and amino acids in beers, their contents and relationships with other analytical data. S. Gorinstein, M. Zemsera, F. Vargas-Albores, J-L. Ochoa, O. Paredes-Lopez, Ch. Scheler, J. Salnikow, O. Martin-Belloso, S. Trakhtenberg. 1999.]</ref>.
Oxygen has a stimulatory effect in ATHP and ETHP production (particularly ATHP), but its exact role is not understood. It has been speculated that since ATHP production is associated with ''Brett'' growth, and ''Brett'' grows better under aerobic conditions, that this is why more ATHP is produced under aerobic conditions <ref>[http://www.brettanomycesproject.com/dissertation/introduction/ Yakobson, Chad. The Brettanomyces Project; Introduction. Retrieved 3/10/2015.]</ref><ref>[http://pubs.acs.org/doi/abs/10.1021/jf071243e The Role of Lysine Amino Nitrogen in the Biosynthesis of Mousy Off-Flavor Compounds by Dekkera anomala. Paul R. Grbin, Markus Herderich, Andrew Markides, Terry H. Lee, and Paul A. Henschke. J. Agric. Food Chem., 2007.]</ref><ref name="Oelofse">[http://scholar.sun.ac.za/handle/10019.1/8437 Significance of Brettanomyces and Dekkera during Winemaking: A Synoptic Review. A. Oelofse, I.S. Pretorius, and M. du Toit. 2008.]</ref>. It has also been hypothesized that oxygen may have a direct effect on the THP molecules themselves <ref name="Snowdon"></ref>. ATHP production was also shown to increase when anaerobically precultured cells were transferred to an aerobic environment, indicating that oxygen has a direct role on the production of ATHP, not just a byproduct of ''Brett'' growth <ref name="Snowdon"></ref>. Limiting oxygen exposure during kegging/force carbonating is recommended for helping to reduce ATHP production; even very small amounts can have an effect.
Interestingly, for unknown reasons ''Brett'' cells grown under aerobic conditions and then transferred to an anaerobic environment still produced significant amounts of ATHP. It has been suggested that the aerobic conditions made the ''Brett'' cells predisposed to creating ATHP <ref name="Snowdon"></ref>. Oxygen exposure during ''Brett'' starters could potentially stimulate ATHP production later on down the road, even if the beer is not exposed to oxygen, although anecdotal evidence shows that this may not be a concern for brewers. It is still advised to use an aerobic or semi-aerobic starter for ''Brett'' unless the brewer believes this might be the direct cause of ATHP problems in their beer. Any other oxygen pick up after the beer has finished fermentation is the more likely cause and the brewer's post-fermentation processes should be examined first.
Although ''Brett'' is capable of producing APY from L-ornithine, the amount produced is much less than that of LAB. In wine, there isn't enough L-ornithine present to production significant amounts of APY from L-ornithine. Therefore, the presence of APY (which is much easier to detect aromatically than ATHP) indicates a bacterial contamination <ref name="Snowdon"></ref>.
The presence of the "mousy off-flavor" caused by forms of THP appears to be temporary in beer. Although not much is known about the degradation or metabolic breakdown of ATHP/ETHP, it tends to age out of beer after 2-6 months. Since the odor/taste threshold for ETHP is much higher than ATHP, and ATHP appears to be metabolized into ETHP by ''Brett'' over time, this may be one of the mechanisms by which the mousy off-flavor ages out of beer. The possibility of ETHP breakdown is not mentioned in any studies that we know of. Another unknown is why does ''Brett'' produce ATHP shortly after kegging and force carbonating a beer that has reached final gravity. The most likely cause is oxygen pick up during the kegging process. Pitching fresh ''Saccharomyces'' for bottle conditioning a at bottling/kegging time and naturally carbonating the beer with ''Brett'' in it sugar has reportedly reduced mousy off-flavor detection, perhaps through the quicker metabolism of both the oxygen and sugar that is introduced during packaging time.
===Lactic Acid Bacteria===