Changes

Jump to: navigation, search

Hops

418 bytes added, 15:51, 6 May 2020
no edit summary
[[File:Biotransformation Takoi 2014.png|[https://www.researchgate.net/publication/261475199_Screening_of_Geraniol-rich_Flavor_Hop_and_Interesting_Behavior_of_beta-Citronellol_During_Fermentation_under_Various_Hop-Addition_Timings Takoi et al. 2014]]]
Other yeast species can also convert monoterpenes. For example, a strain of ''Kluyveromyces lactis'' was found to reduce geraniol to citronellol. This strain and a strain of ''Torulaspora delbrueckii'' produced linalool from both geraniol and nerol, and could also form geraniol from nerol <ref>[https://www.ncbi.nlm.nih.gov/pubmed/10790686 Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis. King A1, Richard Dickinson J. 2000.]</ref>. Many species of ''Debaryomyces'', ''Kluyveromyces'', and ''Pichia'' were found to transform geraniol into linalool, and nerol into linalool and alpha-terpineol <ref>[https://www.ncbi.nlm.nih.gov/pubmed/18357555 Biotransformation of acyclic monoterpenoids by Debaryomyces sp., Kluyveromyces sp., and Pichia sp. strains of environmental origin. Ponzoni C, Gasparetti C, Goretti M, Turchetti B, Pagnoni UM, Cramarossa MR, Forti L, Buzzini P. 2008.]</ref>. Colomer et al. (2020) measured the monoterpenes in two experiments before and after inoculating with different strains of ''Brettanomyces'' that had varying degrees of beta-glucosidase activity. They found that the strains with the least beta-glucosidase activity had the least impact on biotransformation, but the increase in beta-citronellol was higher than what has been reported in biotransformation studies with ''Saccharomyces'' <ref>[https://onlinelibrary.wiley.com/doi/full/10.1002/jib.610 Biotransformation of hop derived compounds by Brettanomyces yeast strains. Marc Serra Colomer, Birgitte Funch, Natalia Solodovnikova, Timothy John Hobley, Jochen Förster. 2020. DOI: https://doi.org/10.1002/jib.610.]</ref>. See [[Brettanomyces#Hop_Biotransformation|''Brettanomyces'' hop biotransformation]] for more information.
Sulfur-based compounds known as ''thiols'' have also been shown to be produced by yeast fermentation from hop derived precursors (suspected to be S-glutathione). So far, science has found that these include the volatile thiols 3-sulfanyl-4-methylpentan-1-ol (3S4MP; grapefruit) and 3-sulfanyl-4-methylpentyl acetate (3S4MPA; passionfruit, grapefruit). These thiols were found in beers dry hopped separately with Amarillo, Hallertau Blanc, and Mosaic hop varieties. The amounts of these two thiols were higher than expected based on the content of these thiols in the hops alone <ref name="Cibaka_2016" />. See also this [https://www.facebook.com/groups/MilkTheFunk/permalink/1373899592638251/ MTF thread speculating on how ''Brettanomyces'' might produce thiols].
===Glycosides===
Hops contain glycosides, which are flavor compounds that are bound to a sugar molecule. In their bound form, glycosides are flavorless. Studies on hop compounds elude to the possibility of compounds being produced by the glycosidic activity of ''S. cerevisiae'', however direct evidence of glucosidic activity in ''S. cerevisiae'' is lacking. Daenen (2008) reviewed the glycosidic activity of many strains of ''S. cerevisiae'', and found that only a few strains expressed any real glucosidic activity and none that exhibited exo-beta-glucosidase which would be required to break glycosidic bonds in the beer/wort. Daenen did find that enzymatic activity from some strains of ''Brettanomyces'' can efficiently release these bound compounds and release their flavor and aromatic potential <ref name="Praet_2012" />. Beta-glucosidase enzyme can also be added to beer to enhance the breakdown of glycosides and intensify hop-derived flavors and aromas. For example, one study showed an increase in citrus, orange, grapefruit, and tropical pineapple in a Cascade dry hopped beer that had beta-glucosidase enzymes added to it <ref>"Optimizing hop aroma in beer dry hopped with Cascade utilizing glycosidic enzymes (presentation slides)." Kaylyn Kirkpatrick from New Belgium Brewing Co. Young Scientist Symposium, Chico, CA 2016.</ref>. There is also some evidence to support that there is higher glucosidase activity in seeded hops, which are generally not used in the brewing industry <ref>"Seeded and "Unseeded Hops - a Quality Comparison (presentation slides)." Martin Zarnkow. EBC 2015.</ref>.
 
Colomer et al. (2020) measured the monoterpenes in two experiments before and after inoculating with different strains of ''Brettanomyces'' that had varying degrees of beta-glucosidase activity. They found that the strains with the least beta-glucosidase activity had the least impact on biotransformation. See [[Brettanomyces#Hop_Biotransformation|''Brettanomyces'' hop biotransformation]] for more information.
The effects of beta-glucosidase on hops may be limited even in ideal conditions using pure beta-glucosidase that is highly efficient in beer where beta-glucosidase activity by yeast is limited. Sharp et al. (2017) determined that hops contain such a small amount of glycosides that their release doesn't contribute much to hop flavor and aroma. While previous studies focused on hop extracts, they studied glycosides in whole leaf hops for the first time and found non-significant levels of hop-derived monoterpenes from glycosides even when using pure beta-glucosidase extracted from almonds. For example, linalool was increased by 16.5 μg/L when using the highest hopping rate, but this amount has little impact on the overall aroma and flavor of the beer. The terpenes citronellol, terpineol, nerol, and geraniol were also not increased in significant amounts, however, the fatty alcohol 1-octanol (waxy, green, citrus, orange, aldehydic, fruity <ref>[http://www.thegoodscentscompany.com/data/rw1021071.html Octanol. The Good Scents Company. Retrieved 03/31/2017.]</ref>) was increased significantly <ref name="Sharp_2017">[http://onlinelibrary.wiley.com/doi/10.1002/jib.418/abstract The effect of hopping regime, cultivar and β-glucosidase activity on monoterpene alcohol concentrations in wort and beer. Daniel C. Sharp, Jan Steensels, Thomas H. Shellhammer. 2017. DOI: 10.1021/jf2042517.]</ref>. The alcohol octanol can be esterified into octyl acetate, which is a classically "citrusy" aroma, so perhaps certain yeasts can create this ester during mid-fermentation hopping <ref>[https://pubs.acs.org/doi/abs/10.1021/jf2042517 Eric G. Dennis, Robert A. Keyzers, Curtis M. Kalua, Suzanne M. Maffei, Emily L. Nicholson, and Paul K. Boss. 2012.]</ref>.

Navigation menu