Changes

Jump to: navigation, search

Tetrahydropyridine

3 bytes added, 11:52, 23 April 2019
no edit summary
[[File:THP path bacteria.JPG|thumbnail|right|[http://pubs.acs.org/doi/abs/10.1021/jf020341r Proposed pathway of APY and ATHP by ''L. hilgardii'' by Costello and Henschke (2002).]]]
Heterofermentative [[Lactobacillus]] spp., particularly ''L. hilgardii'' and ''L. brevis'', as well as ''Leuconostoc oeni'' <ref name="Grbin_1996" />, can also produce high levels of ATHP, ETHP, and to a lesser extent APY and ETHP from L-lysine/L-ornithine, ethanol (must be present), and iron. Although many strains of heterofermentative lactic acid bacteria can produce THP, not all do. For example, Costello et al (2008) found that all strains tested of ''L. brevis'' (3 strains tested), ''L. bucherni'' (3 strains tested), and ''L.hilgardii'' (8 strains tested) produced THP, several heterofermentative species did not produce any detectable levels of THP in a grape-based media (one strain each of ''L. fermentum'' and ''L. cellobiosus''). Some strains within a species produce high amounts while others produce low amounts, for example Costell et al. (2008) found that some strains of ''O. oeni'' produced very high amounts between 50-150 µg/L while others produced very little between 5-20 µg/L in a grape-based media <ref name="Costello_2008">[http://onlinelibrary.wiley.com/doi/10.1111/j.1755-0238.2001.tb00205.x/abstract Ability of lactic acid bacteria to produce N-heterocycles causing mousy off-flavour in wine. PETER J. COSTELLO1, TERRY H. LEE1, and PAULA. HENSCHKE. 2008.]</ref>. A strain of ''L. plantarum'' (L11a) was shown to produce relatively low amounts. L-lysine stimulates production of ATHP, and L-ornithine stimulates the production of APY <ref name="Costello">[http://pubs.acs.org/doi/abs/10.1021/jf020341r Mousy Off-Flavor of Wine:  Precursors and Biosynthesis of the Causative N-Heterocycles 2-Ethyltetrahydropyridine, 2-Acetyltetrahydropyridine, and 2-Acetyl-1-pyrroline by Lactobacillus hilgardii DSM 20176. Peter J. Costello and Paul A. Henschke. 2002.]</ref><ref>[http://www.ajevonline.org/content/37/2/127.abstract Formation of Substituted Tetrahydropyridines by Species of Brettanomyces and Lactobacillus Isolated from Mousy Wines. Tamila Heresztyn. 1986.]</ref><ref name="Costello_2008" /><ref>Sparrows, Jeff. ''Wild Brews''. Brewers Publications. 2005. Pg. 112.</ref><ref>[https://books.google.com/books?id=tFjsAuo5WocC&pg=PA348&lpg=PA348&dq=lactobacillus+Tetrahydropyridine&source=bl&ots=QUVyoFtIwK&sig=h1cdjB0r1pIRX2Bms8wVA0UiLk4&hl=en&sa=X&ei=4DX_VPz5CsH6oQSAzoGgBA&ved=0CEwQ6AEwCQ#v=onepage&q=lactobacillus%20Tetrahydropyridine&f=false Lahtinen, Ouwehand, Salminen, von Wright. Lactic Acid Bacteria: Microbiological and Functional Aspects, Fourth Edition. Pg 348.]</ref><ref>[http://ajevonline.org/content/37/2/127.short Heresztyn, Tamila. Formation of Substituted Tetrahydropyridines by Species of Brettanomyces and Lactobacillus Isolated from Mousy Wines.]</ref>. Acetaldehyde has a stimulatory effect on ATHP and APY production, but is not required. No studies have been done to show whether or not oxygen plays a role in ATHP/APY production in LAB <ref name="Snowdon"></ref>. Most species of [[Pediococcus]] do not create forms of THP, although a few species do produce relatively small amounts. In particular, these include ''P. pentosaceus'' <ref>[http://www.uniprot.org/uniprot/Q03HT0 UniProt article. Retrieved 3/10/2015.]</ref><ref>[http://www.uniprot.org/uniprot/U5ZF76 UniProt article. Retrieved 3/10/2015.]</ref>, and ''P. clausenii'' <ref>[http://www.uniprot.org/uniprot/G8PEU4 UniProt article. Retrieved 3/10/2015.]</ref>, although one study found no THP in two strains of ''P. pentocaseus'' and only transient/occasional THP production in one out of five strains of ''P. parvulus'' <ref name="Costello" />. ''Oenococcus oeni'' and ''Leuconostoc mesenteroides'' have also been associated with creating ATHP, APY, and ETHP all above threshold amounts. Since only heterofermentative species produce significant amounts of THP, it is thought that its production is linked to the heterolactic pathway, and thus the metabolism of sugars in LAB <ref name="Costello"></ref>. A pathway for APY and ATHP production in ''Lactobacillus hilgardii'' was proposed by Costello and Henschke, which involves the intake of lysine or ornithine, along with ethanol (which is broken down into acetaldehyde) to produce APY and ATHP <ref name="Costello" />. ''Lactobacillus pontis'' has been shown to break down proteins via proteolysis, yielding free amino acids such as ornithine which could serve as precursors to THP formation, and it might be [[Lactobacillus#Foam_Degradation|reasonable to presume]] that other species of ''Lactobacillus'' could also free up ornithine as a precursor to THP <ref name="Adams_2005" />.
===Acetic Acid Bacteria and Mould===

Navigation menu