13,691
edits
Changes
started cyanogenic glycosides section
Sensory analysis of beers with cherries or hops have shown that there is a significantly detectable difference between cherry beers that have been exposed to beta-glucosidase from one strain of ''B. anomalus'' versus not exposed to the enzyme, but no significant difference was found in beers hopped with pellets. The cherry beers exposed to the enzyme contained more and above odor threshold eugenol (clove, honey aroma), benzyl alcohol (sweet, flower), benzaldehyde (almond, cherry) than cherry beers that were not exposed to the enzyme. The cherry beers exposed to the enzyme were not only identified in a blind tasting, but were also preferred to the cherry beers without exposure to the enzyme, indicating that beta-glucosidase activity in cherry beers provides a significant flavor difference. Other types of beta-glucosidase enzymes released different levels of different flavor compounds, indicating that the source (bacteria or yeast) of the enzyme make a significant difference in the flavors that are produced <ref name="Vervoort"></ref>.
===Cyanogenic Glycosides===
'''(In progress)'''
All plants contain tiny amounts of [https://en.wikipedia.org/wiki/Hydrogen_cyanide hydrogen cyanide] (HCN), however some plants also release high amounts of HCN from a class of glycosides called "cyanogenic glycosides". HCN is highly toxic. The human body is used to breaking down trace amounts of cyanide into the less toxic substance thiocyanate with an enzyme called rhodanese, which then leaves the body via urination <ref name="Gleadow_2014">[http://www.annualreviews.org/doi/full/10.1146/annurev-arplant-050213-040027 Cyanogenic Glycosides: Synthesis, Physiology, and Phenotypic Plasticity. Roslyn M. Gleadow and Birger Lindberg Møller. 2014.]</ref>. Only a few plants release enough HCN from cyanogenic glycosides to be considered dangerous (generally, other forms of cyanide are considered more dangerous, such as from exposure to air or water that is polluted with cyanide) <ref name="CDC1">[http://www.atsdr.cdc.gov/toxprofiles/tp8.pdf toxicology Profile for Cyanide. Agency for Toxic Substances & Disease Registry. July 2006. Retrieved 08/25/2016.]</ref>. HCN is released from cyanogenic glycosides just like other types of glycosides: beta-glucosidase enzyme or exposure to low pH breaks the bond between a glucose molecule and an unstable compound called "cyanohydrin" (or "alpha-hydroxynnitrile"), which then disassociates into a ketone or benzaldehyde and an HCN molecule. This reaction is stimulated by maceration, and by bacteria in the human gut <ref name="Speijers">[http://www.inchem.org/documents/jecfa/jecmono/v30je18.htm "Cyanogenic Glycosides", First Draft. Dr G. Speijers. National Institute of Public Health and Environmental Protection Laboratory for Toxicology, Bilthoven, The Netherlands. Retrieved 08/25/2016.]</ref>.
==See Also==