Difference between revisions of "Tetrahydropyridine"

From Milk The Funk Wiki
Jump to: navigation, search
(Major content update for Production)
Line 6: Line 6:
  
 
==Production==
 
==Production==
''Editor's note: special thanks to [http://www.homebrewtalk.com/f127/brett-strain-production-athp-449852/ ne0t0ky0] on Homebrewtalk for collecting some of these resources.''
+
[[File:THP Pathway.JPG|thumb|400|Proposed pathway for THP production <ref name="Elsevier">[https://books.google.com/books?hl=en&lr=&id=KJJwAgAAQBAJ&oi=fnd&pg=PA346&dq=brettanomyces+Tetrahydropyridine&ots=ktbn8PR_fF&sig=r3lkcV-gBa-pK86HSOgFDVIJVDk#v=onepage&q=brettanomyces%20Tetrahydropyridine&f=false Managing Wine Quality: Oenology and Wine Quality. A Reynolds Elsevier, Sep 30, 2010. Pg 359.]</ref>]]
  
[[Brettanomyces]], [[Lactobacillus]], and [[Pediococcus]] can produce forms of Tetrahydropyridines.  In Brettanomyces, 2-acetyl-3,4,5,6-tetrahydropyridine (ATHP) can be metabolized by the amino acid L-Lysine and ethanol with oxygen having a stimulatory effect in it's production, although little else is known about it's production in Brettanomyces <ref>[http://www.brettanomycesproject.com/dissertation/introduction/ Yakobson, Chad.  The Brettanomyces Project; Introduction.  Retrieved 3/10/2015.]</ref>.  ATHP is further metabolized into 2-ethyltetrahydropyridine (ETHP/ETPY) by Brettanomyces, although not much is known about this metabolic process either <ref>[http://ucce.ucdavis.edu/files/repositoryfiles/Joseph_5_Aromatic_Diverswity_of_Brettanomyces-82350.ppt Joseph, C.M. Lucy.  ''Aromatic Diversity of Brettanomyces''.  U.C. Davis.  Retrieved 3/10/2015.]</ref>.   
+
[[Brettanomyces]], [[Lactobacillus]], and [[Pediococcus]] can produce forms of ''Tetrahydropyridine''.  In Brettanomyces, THP is produced by metabolizing the amino acids L-Lysine and D-Lysine, along with and ethanol. Oxygen has a stimulatory effect in it's production <ref>[http://www.brettanomycesproject.com/dissertation/introduction/ Yakobson, Chad.  The Brettanomyces Project; Introduction.  Retrieved 3/10/2015.]</ref><ref>[http://pubs.acs.org/doi/abs/10.1021/jf071243e The Role of Lysine Amino Nitrogen in the Biosynthesis of Mousy Off-Flavor Compounds by Dekkera anomala.  Paul R. Grbin, Markus Herderich, Andrew Markides, Terry H. Lee, and Paul A. Henschke. J. Agric. Food Chem., 2007.]</ref>.  The level of THP production varies widely between species and strains of ''Brett'', with some strains not producing it at all and some producing very high amounts above taste threshold.  Additionally, THP production in the presence of higher glucose and fructose levels, which explains why THP may be seen more often in stuck wine fermentations than wine that has finished fermenting <ref>[http://www.ncbi.nlm.nih.gov/pubmed/18194246 Growth and volatile compound production by Brettanomyces/Dekkera bruxellensis in red wine.  Romano A, Perello MC, de Revel G, Lonvaud-Funel A.  J Appl Microbiol. 2008 Jun.</ref>.  ATHP is further metabolized into 2-ethyltetrahydropyridine (ETHP/ETPY) by Brettanomyces, although not much is known about this metabolic process <ref>[http://ucce.ucdavis.edu/files/repositoryfiles/Joseph_5_Aromatic_Diverswity_of_Brettanomyces-82350.ppt Joseph, C.M. Lucy.  ''Aromatic Diversity of Brettanomyces''.  U.C. Davis.  Retrieved 3/10/2015.]</ref>.  The presence of the "mousy off-flavor" caused by THP appears to be temporary in beer.  Although not much is known about the degradation or metabolic break down of THP, it tends to age out of beer after 2-3 months.   
  
 
Heterofermentative [[Lactobacillus]] spp. can also produce ATHP and ETHP from Lysine and ethanol <ref>Sparrows, Jeff.  ''Wild Brews''.  Brewers Publications.  2005.  Pg. 112.</ref><ref>[https://books.google.com/books?id=tFjsAuo5WocC&pg=PA348&lpg=PA348&dq=lactobacillus+Tetrahydropyridine&source=bl&ots=QUVyoFtIwK&sig=h1cdjB0r1pIRX2Bms8wVA0UiLk4&hl=en&sa=X&ei=4DX_VPz5CsH6oQSAzoGgBA&ved=0CEwQ6AEwCQ#v=onepage&q=lactobacillus%20Tetrahydropyridine&f=false Lahtinen, Ouwehand, Salminen, von Wright. Lactic Acid Bacteria: Microbiological and Functional Aspects, Fourth Edition.  Pg 348.]</ref><ref>[http://ajevonline.org/content/37/2/127.short Heresztyn, Tamila.  Formation of Substituted Tetrahydropyridines by Species of Brettanomyces and Lactobacillus Isolated from Mousy Wines.]</ref>.   
 
Heterofermentative [[Lactobacillus]] spp. can also produce ATHP and ETHP from Lysine and ethanol <ref>Sparrows, Jeff.  ''Wild Brews''.  Brewers Publications.  2005.  Pg. 112.</ref><ref>[https://books.google.com/books?id=tFjsAuo5WocC&pg=PA348&lpg=PA348&dq=lactobacillus+Tetrahydropyridine&source=bl&ots=QUVyoFtIwK&sig=h1cdjB0r1pIRX2Bms8wVA0UiLk4&hl=en&sa=X&ei=4DX_VPz5CsH6oQSAzoGgBA&ved=0CEwQ6AEwCQ#v=onepage&q=lactobacillus%20Tetrahydropyridine&f=false Lahtinen, Ouwehand, Salminen, von Wright. Lactic Acid Bacteria: Microbiological and Functional Aspects, Fourth Edition.  Pg 348.]</ref><ref>[http://ajevonline.org/content/37/2/127.short Heresztyn, Tamila.  Formation of Substituted Tetrahydropyridines by Species of Brettanomyces and Lactobacillus Isolated from Mousy Wines.]</ref>.   

Revision as of 10:03, 26 August 2015

Forms of Tetrahydropyridines, specifically 6-Acetyl-2,3,4,5-tetrahydropyridine (ATHP or ACTPY), 2-ethyltetrahydropyridine (ETHP), and 2-acetyl-1-pyrroline (ACPY or APY) [1], which are classified as ketones [2], are commonly attributed to the "mousy", "urine" (in high amounts) "cheerios" or "Captain Crunch" (in low amounts), "breakfast cereal", or more generically, "cracker biscuit" flavor in sour beers. The flavor is detected towards the end of the swallow. Diacetyl is sometimes mistakenly indicated as a potential cause of this flavor in sour beers. However, Tetrahydropyridines are the accepted cause. The flavor tends to age out of sour beers, although the exact mechanism for this is not fully understood [3]. Michael Tonsmeire also noticed that pitching rehydrated wine yeast at bottling reduces the amount/duration of this flavor [4].

In food, Tetrahydropyridines are associated with the aroma of baked goods such as white bread, popcorn, and tortillas, and is formed by Maillard reactions during heating. ATHP and APY have an odor threshold of 0.06ng/l [1].

Traditionally, the mousy/cheerios flavor from THP is considered an off flavor in both wine and sour beer. There is some debate and differing opinions as to whether or not a small amount of THP flavor is allowable (or even enjoyable) in sour beers, however most consider any level to be an off flavor.

Production

Proposed pathway for THP production [5]

Brettanomyces, Lactobacillus, and Pediococcus can produce forms of Tetrahydropyridine. In Brettanomyces, THP is produced by metabolizing the amino acids L-Lysine and D-Lysine, along with and ethanol. Oxygen has a stimulatory effect in it's production [6][7]. The level of THP production varies widely between species and strains of Brett, with some strains not producing it at all and some producing very high amounts above taste threshold. Additionally, THP production in the presence of higher glucose and fructose levels, which explains why THP may be seen more often in stuck wine fermentations than wine that has finished fermenting [8]. ATHP is further metabolized into 2-ethyltetrahydropyridine (ETHP/ETPY) by Brettanomyces, although not much is known about this metabolic process [9]. The presence of the "mousy off-flavor" caused by THP appears to be temporary in beer. Although not much is known about the degradation or metabolic break down of THP, it tends to age out of beer after 2-3 months.

Heterofermentative Lactobacillus spp. can also produce ATHP and ETHP from Lysine and ethanol [10][11][12].

Some species of Pediococcus have been associated with the production of ATHP. In particular, these include P. pentosaceus [13][14], and P. clausenii [15] (note that commercial cultures of Pediococcus are normally P. damnosus).

Thresholds

Editor's note: the following thresholds are from a study on wine, and may not hold true for beer.

  • 2-ethyltetrahydropyridine (ETHP/ETPY)
    • Taste threshold (wine): 150 µg/L
    • Concentration reported in wines exhibiting mousy off-flavour: 2.7-18.7 µg/L
  • 2-acetyltetrahydropyridine (/ATHP/ACTPY) -
    • Odor threshold (water): 1.6 µg/L
    • Concentration reported in wines exhibiting mousy off-flavour: 4.8-106 µg/L
  • 2-acetyl-1-pyrroline (ACPY)
    • Odor threshold (water): 0.1 µg/L
    • Concentration reported in wines exhibiting mousy off-flavour: Tr-7.8 µg/L [16]

Discussions

Below is a list of discussions on internet forum threads that may shed light on specific strains and individual experiences. Keep in mind that many of the opinions and experiences are anecdotal, although commonalities and shared experiences may prove to be useful and accurate.

References

  1. 1.0 1.1 6-Acetyl-2,3,4,5-tetrahydropyridine. Wikipedia. Retrieved 3/210/2015.
  2. Humbard, Matt. Milk The funk Discussion. 3/10/2015.
  3. Tonsmeire, Michael. Homebrewtalk.com post 1. 11/21/2014. Retrieved 3/10/2015.
  4. Tonsmeire, Michael. Homebrewtalk.com post 2. 11/21/2014. Retrieved 3/10/2015.
  5. Managing Wine Quality: Oenology and Wine Quality. A Reynolds Elsevier, Sep 30, 2010. Pg 359.
  6. Yakobson, Chad. The Brettanomyces Project; Introduction. Retrieved 3/10/2015.
  7. The Role of Lysine Amino Nitrogen in the Biosynthesis of Mousy Off-Flavor Compounds by Dekkera anomala. Paul R. Grbin, Markus Herderich, Andrew Markides, Terry H. Lee, and Paul A. Henschke. J. Agric. Food Chem., 2007.
  8. [http://www.ncbi.nlm.nih.gov/pubmed/18194246 Growth and volatile compound production by Brettanomyces/Dekkera bruxellensis in red wine. Romano A, Perello MC, de Revel G, Lonvaud-Funel A. J Appl Microbiol. 2008 Jun.
  9. Joseph, C.M. Lucy. Aromatic Diversity of Brettanomyces. U.C. Davis. Retrieved 3/10/2015.
  10. Sparrows, Jeff. Wild Brews. Brewers Publications. 2005. Pg. 112.
  11. Lahtinen, Ouwehand, Salminen, von Wright. Lactic Acid Bacteria: Microbiological and Functional Aspects, Fourth Edition. Pg 348.
  12. Heresztyn, Tamila. Formation of Substituted Tetrahydropyridines by Species of Brettanomyces and Lactobacillus Isolated from Mousy Wines.
  13. UniProt article. Retrieved 3/10/2015.
  14. UniProt article. Retrieved 3/10/2015.
  15. UniProt article. Retrieved 3/10/2015.
  16. Malolactic Fermentation 2005. Geneva on the Lake. Feb 2005. Retrieved 3/10/2015.