Difference between revisions of "Nonconventional Yeasts and Bacteria"
(added cross links to killer yeast info and bacteriocins) |
(update to Wild Pitch Yeast Yeast YH2) |
||
Line 31: | Line 31: | ||
|- | |- | ||
| [[Wild Pitch Yeast]] || Yeast YH2 || ''Hanseniaspora uvarum'' || 45% || | | [[Wild Pitch Yeast]] || Yeast YH2 || ''Hanseniaspora uvarum'' || 45% || | ||
− | || || This wild cousin of Saccharomyces cerevisiae that is often found in wine fermentations was isolated from a serviceberry in Bloomington, IN in 2014. This yeast produces a yeasty aroma and lends a pleasant tart, spicy flavor to beer. It is recommended for a mixed fermentation with a neutral, more attenuative ''S. cerevisiae'' strain <ref name="wild_pitch_catalog">[http://wildpitchyeast.com/yeast-catalog Wild Pitch Yeast catalog. Retrieved 1/2/2018.]</ref>. | + | || || This wild cousin of Saccharomyces cerevisiae that is often found in wine fermentations was isolated from a serviceberry in Bloomington, IN in 2014. This yeast produces a yeasty aroma and lends a pleasant tart, spicy flavor to beer. It is recommended for a mixed fermentation with a neutral, more attenuative ''S. cerevisiae'' strain <ref name="wild_pitch_catalog">[http://wildpitchyeast.com/yeast-catalog Wild Pitch Yeast catalog. Retrieved 1/2/2018.]</ref>. Produces lactic acid (down to pH 3.2 in some cases) and ethanol (up to 8-9% ABV) at the same time and is hop tolerant up to at least 75 IBU <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1947575938603944/?comment_id=1947588381936033&reply_comment_id=1951757644852440&comment_tracking=%7B%22tn%22%3A%22R%22%7D Dr. Matt Bochman. Milk The Funk thread on Saucy Brew Works use of lactic acid yeast. 01/12/2018.]</ref>. |
|- | |- | ||
| [[Wild Pitch Yeast]] || Yeast YH39 || ''Lanchancea thermotolerans'' || 40% || | | [[Wild Pitch Yeast]] || Yeast YH39 || ''Lanchancea thermotolerans'' || 40% || |
Revision as of 12:32, 12 January 2018
Nonconventional Yeasts and Bacteria are yeasts and bacteria genera that haven't been greatly explored in alcoholic fermentation, but might prove to be worth exploration. This page contains anecdotal information, as well as scientific information that might prove useful for brewers who are looking to brew with microbes that don't include the typical lab yeasts and bacteria for sour/mixed fermentations. For yeasts and bacteria that are more often used in sour and mixed fermentations, see Saccharomyces, Brettanomyces, Lactobacillus, and Pediococcus.
Under progress
Contents
- 1 Commercial Cultures
- 2 General Information
- 3 Yeasts
- 4 Bacteria
- 5 Potential references
- 6 See Also
- 7 References
Commercial Cultures
Mixed cultures that contain one or more of these "nonconventional yeasts or bacteria" along with Saccharomyces cerevisiae or Brettanomyces will be listed on Mixed Cultures.
Lab Name | Product Name | Taxonomy | Attenuation | Flocculation | Starter Note | Fermentation/Other Notes |
---|---|---|---|---|---|---|
Mainiacal Yeast | Earth Bender | Tolurspora delbrueckii | 62-80% | This particular strain of T. delbrueckii brings a earthy character but has a ethanol tolerance of around 5% so is best used when co pitched with another strain or low gravity beers. It tends to be more earthy when used co pitched. | ||
Mainiacal Yeast | MYTD1 | Tolurspora delbrueckii | 65-78% | This strain is very hefeweizen like. It lends notes of cloves and light bananas while also having a slight rustic farmhouse feel. It's ethanol tolerance is around 6% so should not be used in high gravity beers unless co pitched with a strain that can attenuate out. | ||
Mainiacal Yeast | Basement Dweller | Debaryomyces hansenii | 10-20% | This strain needs to be used in conjuction with another primary ferment. It will not fully attenuate but adds a funky quality to whatever its used in. It can be used pre ferment, co ferment, or post fermentation. Like most other Debaryomyces species this strain has a high salinity tolerance. | ||
Mainiacal Yeast | MYOO1 | Oenococcus oeni | Less then 5% | A lactic acid bacteria that can also convert malic acid to lactic acid. This species is generally used in wine making to soften the malic acid character. However some strains can also metabolize maltose making it a viable souring bacteria. This strain can do so and adds a light stone fruit note to the beer. Keep in mind if fruiting a beer while this is present it will consume malic acid from the fruit creating more lactic acid. | ||
Mainiacal Yeast | MYOO2 | Oenococcus oeni | Less then 5% | A lactic acid bacteria that can also convert malic acid to lactic acid. This species is generally used in wine making to soften the malic acid character. This strain cannot metabolize maltose so should be used after a beer has had some sort of fruit added or other carbon source of glucose/malic acid. We find this also pairs well with other bacteria strains. | ||
Mainiacal Yeast | Alternative to Alternatives | Blend | 80-100% | Low | One of our most unique blends. This includes all of our yeast and bacteria strains that are not Sacc, Brett, Lacto, or Pedio. This blend will continue to change as we added new microbes to our bank. Currently this blend contains Zygosaccharomyces , Lachancea f, Lachancea t, Wickerhamomyces a, S. japonicus, Hanseniaspora v, Pichia a, Pichia m, 2 strains of Toluraspora d, Debaryomyces h, 3 strains of Oenococcus o , and Weissella c. This blend is very unique as it changes severely depending on its environment and carbon sources. | |
White Labs | Various | Various | See https://www.whitelabs.com/yeast-vault | |||
Wild Pitch Yeast | Yeast YH2 | Hanseniaspora uvarum | 45% | This wild cousin of Saccharomyces cerevisiae that is often found in wine fermentations was isolated from a serviceberry in Bloomington, IN in 2014. This yeast produces a yeasty aroma and lends a pleasant tart, spicy flavor to beer. It is recommended for a mixed fermentation with a neutral, more attenuative S. cerevisiae strain [1]. Produces lactic acid (down to pH 3.2 in some cases) and ethanol (up to 8-9% ABV) at the same time and is hop tolerant up to at least 75 IBU [2]. | ||
Wild Pitch Yeast | Yeast YH39 | Lanchancea thermotolerans | 40% | This wild cousin of Saccharomyces cerevisiae was isolated from a chestnut oak tree in Bloomington, IN in 2014. This yeast produces a mild yeasty aroma and beers that flavors that are Belgian- and saison-like with a subtle spice. It is recommended for a mixed fermentation with a neutral, more attenuative S. cerevisiae strain [1]. | ||
Wild Pitch Yeast | Yeast YH52 | Torulaspora delbrueckii | 63% | This wild cousin of Saccharomyces cerevisiae was isolated from a white oak tree on the Indiana University campus in Bloomington, IN in 2014. This yeast produces a Belgian phenolic character and an original bubblegum flavor [1]. |
General Information
Killer Toxins
Many genera of yeast and bacteria produce toxins that other strains or species are sensitive to. See Killer Yeast strains and Bacteriocins for more information.
Yeasts
Debaryomyces spp.
Debaryomyces is a genus of yeast commonly referred to as a spoilage yeast [3]. The non-pathogenic species D. hansenii is commonly found in cheese and is an osmotolerant, halotolerant, and xerotolerant (tolerant high amounts of salt and sugar, and low amounts of water) [4]. Debaryomyces are associated with natural fermentation, and tend to develop during the maturation of beer [5].
Recently it was found living cells of a Debaryomyces species in a bottle of porter found in a shipwreck under the English Channel that was dated to 1825. It is currently unknown how this yeast might have affected the flavor of the historical porter, but the characterization of this yeast is underway by Brewlab in the UK [5].
Debaryomyces hansenii
D hansenii is the most prevalent yeast in dairy and meat products as well as early stages of soy sauce fermentation. Various isolates exist originating from cheese, sake moto, edomiso, rennet, psoriasis, infected hands and salmon. In general, D. hansenii can be found in habitats with low water activity as well as in products with high sugar concentrations. Although D. hansenii is considered a non-pathogenic yeast, various clinical cases of D. hansenii exist. This yeast was originally isolated from saline environments and is maybe one of the most osmotolerant (can tolerate high levels of salt and sugar) yeasts in existence. [6]
General Information
As already mentioned, D. hansenii can tolerate very high levels of salt. Some sources cite salinity levels up to 24% whereas Saccharomyces cerevisiae commonly tolerate levels up to 10%. Such high tolerances are not that common in living organisms and can be used on industrial scale by cultivating D. hansenii at high salt levels to prevent the growth of other yeasts (quasi non-sterile production conditions). Beside dealing with high osmolarities, D. hansenii secrete toxins capable of killing other yeasts. [6]
Although this yeast is already an extremophile(an organism that thrives in physically or geochemically extreme conditions that are detrimental to most life on Earth) in terms of osmolarity, it does not stop there. Besides the normal sugars, D. hansenii is capable of metabolizing n-alkanes, melibiose, raffinose, soluble starch, inositol, xylose, lactic acid and citric acid. Furthermore, this yeast can form arabitol(a sugar alcohol) as well as riboflavin (vitamin B2). D. hansenii is therefore used on industrial scale to produce vitamin B2 and has a big potential for other biotechnological processes. [6]
D. hansenii is a very common yeast in cheeses and seems to have a major impact on the development of the microflora as well as the taste. As previously mentioned, D. hansenii can metabolize lactic acid, citric acid and galactose. The metabolization of lactic acid by yeasts has been shown to have an impact on the bacterial flora of the cheese in types such as Limburger, Tilsiter, Port Salut, Trappist, Brick and the Danish Danbo. Furthermore, D. hansenii forms volatile compounds associated with a “cheesy” flavor. For example, D. hansenii seems to have a major role in the development of Cheddar and Camembert cheese by synthesizing S-methylthioacetate (most prevalent volatile sulfur compound found in cheese).[6]
Debaryomyces nepalensis
Debaryomyces nepalensis is an osmotolerant yeast isolated from rotten apples that is known to utilize both hexoses and pentoses and produce industrially important metabolites like ethanol, xylitol and arabitol. [7]
Sugar Utilization and Ethanol Creation
Carbon Source | Carbon Source Consumed (g/L) | Ethanol Created (g/L) |
---|---|---|
Sucrose | 82.00 | 9.90 |
Glucose | 84.75 | 9.05 |
Arabinose | 86.70 | 2.43 |
Fructose | 80.40 | 9.84 |
Glycerol | 50.60 | 0.77 |
General Information
Effect of nitrogen sources
The organism was grown in the presence of different sources of nitrogen like, ammonium sulphate, nitrates and nitrites along with yeast extract and its ability to produce ethanol and arabitol was studied. Among them ammonium sulphate served as the best nitrogen source, whereas, in the presence of nitrites and nitrates, the organism failed to metabolize glucose efficiently. Yeast extract proved to be an integral source of amino acids and other vitamins for growth, without which, the organism had low efficiency for its metabolism. [7]
Hanseniaspora
Wines fermented with a combination of M. pulcherrima, H. uvarum, S. cerevisiae, and lactic acid bacteria, had a slightly lower ethanol percent, but a higher phenolic acid content and slightly better mouthfeel [8].
Kluyveromyces
Lachancea
Lachancea thermotolerans
Formerly classified as Kluyveromyces thermotolerans [9], L. thermotolerans is a species of yeast that has been found to produce small amounts of lactic acid during fermentation.
The optimal fermentation range is reported to be between 61-68°F (16-20°C) for one strain that Bryan of Sui Generis blog has worked with, 70-72°F (21-22°C) for another strain that DeWayne Schaaf/Justin Amaral have traded on MTF, and 74°F (23°C) for a third strain that Justin Amaral has worked with. Many strains may die at temperatures as low as 84°F (28°C). Some other species of Lachancea die at 20°C (68°F), hence the species name "thermotolerans" [10].
The amount of time needed to ferment wort with L. thermotolerans appears to be strain dependent. The strain from DeWayne Schaaf, for example, takes around 3 weeks to finish fermenting, and ends up at around 3.7-3.9 pH (not a lot of lactic acid is produced). Bryan of Sui Generis blog reported that his strain of L. thermotolerans takes about 2 weeks to ferment, but the resulting beer improves flavor-wise with a few weeks to months of aging [11].
Many other strains have a lower fermentation capacity. Because of this, studies in wine have focused on co-fermentation with Saccharomyces in order to reduce the pH of the wine and provide fruity ethyl lacate esters. Three strains were tested by Dimizio et al. (2016) for their fermentation characteristics after 21 days of fermentation under different conditions. They found that all three strains fermented maltose at similar levels of S. cerevisiae, but none fermented maltotriose and other studies have tested strains that do not ferment maltose. The L. thermotolerans strains produced 6-12% less total ethanol than S. cerevisiae, showing that in general that this species has lower attenuation than brewers yeast. All three strains of L. thermotolerans produced lactic acid, but it took 21 days to achieve maximum lactic acid levels, and only one strain resulted in beers that were at a pH of 3.77 (the other strains produced beers that were at a pH of 4.11 and 4.28, which were similar to the S. cerevisiae strain that was tested). It was noted that other strains have been reported to produce a pH of 3.6, so the ability of L. thermotolerans to sour beer is widely dependent on strain. L. thermotolerans also produced significantly more glycerol than the beer yeast (between 65-75% more at day 21), which demonstrates that this species could be used to improve mouthfeel. Pitching rate didn't greatly affect the amount of lactic acid produced, although the lowest pitching rate tested produced slightly more lactic acid. Repitching up to five generations did not seem to have a great effect on viability and slightly improved its fermentation capability, and they were not noticeably affected by high IBU's (60) or low vs high oxygenation levels. L. thermotolerans did not have a negative effect on head retention, and behaved similarly to S. cerevisiae as far as flocculation. Overall, the levels of VDK's and diacetyl were lower than that of the tested strain of S. cerevisiae, however, another study showed that they were higher in wort that was highly saturated with oxygen. The sensory effects of L. thermotolerans were described as "positive", but the data was not shown in the study. At lower fermentation temperatures (16°C), the tasters described the beer as tasting "fruity, floral, sour, clove, melon, and strawberry". However, in another study of another strain that did not ferment well was described as "yielded strong, unpleasant phenolic aromas, notably 4-ethylphenol." This seems to indicate that L. thermotolerans generally produces phenols, although phenols were not measured in this study. One strain tested was shown to have higher beta-glucosidase activity, which could indicate that it could aid in the break down Glycosides in hops or fruit [9].
See also:
- Post 1 and Post 2 on Lachancea thermotolerans that can produce significant lactic acid without modification.
- MTF thread on a lab's application to patent pitching this yeast into wort. A follow up post on 09/01/2017 discusses Sheppard and Madden opening a business that claims patent on this yeast, and restricts competing breweries from using it.
Lachancea fermentati
Metschnikowia
Wines fermented with a combination of M. pulcherrima, H. uvarum, S. cerevisiae, and lactic acid bacteria, had a slightly lower ethanol percent, but a higher phenolic acid content and slightly better mouthfeel [8].
https://www.facebook.com/groups/MilkTheFunk/permalink/1862425643785641/
Pichia
Pichia is a genus of yeasts in the family Saccharomycetaceae with spherical, elliptical, or oblong cells. Pichia is a teleomorph, and forms hat-shaped, hemispherical, or round ascospores during reproduction. The anamorphs of some Pichia species are Candida species. The asexual reproduction is by multilateral budding. Pichia can be prolific pellicle-forming yeasts. [12]
Pichia kudriavzevii
P. kudriavzevii is a very abundant yeast found in soil, fruits, and various fermented beverages. It is ovoid to elongate in shape. So far, P. kudriavzevii is mainly associated with food spoilage to cause surface biofilms in low pH products. It is also known for known for creating a very heavy pellicle. [13]
Sugar Utilization
P. kudriavzevii can mainly metabolize glucose making it a non-viable strain for primary fermentations. During trials it was unable to metabolize galactose, sucrose, maltose, lactose, raffinose, and trehalose. [13] Interestingly, some strains of P. kudriavzevii can metabolize pentose sugars such as xylose [14].
Pichia apotheca
Pichia apotheca is a new hybrid species of Pichia which was identified in 2017. [15] Pichia apoteca was identified as a hybrid of Pichia membranifaciens and another unidentified species of Pichia.
Characterization
During the study, a fermentation using solely Pichia apoteca was conducted. The test wort used was at 13.75 degrees Plato and after 5 weeks at 13.61 degrees Plato. The alcohol by weight was found to be 0.02% after fermentation. In addition to this, percentages based on the entire contents of the wort showed that over five weeks, glucose levels dropped from 1.62% to 1.22%. The hybrid may incrementally breakdown maltotriose and fructose, dropping from 1.46% to 1.05% and 0.57% to 0.22% respectively, but did not appear to be able to reduce the levels of maltose. These results indicate that the Pichia hybrid did not significantly metabolize much of the available carbohydrates into alcohol within this wort environment. [15]
Pichia membranifaciens
Pichia anomala
Schizosaccharomyces
Schizosaccharomyces is a genus of fission yeasts. The most well-studied species is S. pombe. At present four Schizosaccharomyces species have been described (S. pombe, S. japonicus, S. octosporus and S. cryophilus). Like the distantly related Saccharomyces cerevisiae, Schizosaccharomyces is a significant model organism in the study of eukaryotic cell biology. It is particularly useful in evolutionary studies because it is thought to have diverged from the Saccharomyces cerevisiae lineage between 300 million and 1 billion years ago, and thus provides an evolutionary distant comparison.
Schizosaccharomyces japonicus
Justin Amaral's experiencing using S. japonicus https://www.facebook.com/groups/MilkTheFunk/permalink/1457271340967742/
Schizosaccharomyces pombe
The fission yeast S. pombe is a unicellular eukaryote [16] that is rod shaped. They measure approximately 2 to 3 microns in diameter and 7 to 14 microns in length. S. pombe is usually found in sugar-containing fermentations of alcohol from subtropical regions. Even though its origin dates back to quite a long time ago, it was not widely known before the 1890’s. It was discovered in 1893 when a group working in a Brewery Association Laboratory in Germany was looking at sediment found in millet beer imported from East Africa that gave it an unsavory acidic taste. P. Lindner was the first to describe Schizosaccharomyces pombe. He chose as its epithet the Swahili word for beer, pombe. It was identified as yeast, and it became known as the fission yeast because it reproduces by means of fission unlike its relative Saccharomyces cerevisiae. The name Schizosaccharomyces was assigned to it because Schizo- means different, which had been previously used to describe other fission species. [17]
Dr. Matt Bochman has experimented fermenting beer with some strains of S pombe. He reported that a lot of sulfurous compounds were produced, but this could have been just his strains or his fermentation conditions [18].
Toluraspora delbrueckii
Toluraspora delbrueckii is species of yeast, that is round to ovoid in shape and has been traditionally used in some wine fermentations to increase the complexity. Most of the commercial Torulaspora species and strains were isolated from soil, fermenting grapes (wine), berries, agave juice, tea-beer, apple juice, leaf of mangrove a tree, moss, lemonade and tree barks. Although it was said that most T. delbrueckii strains would not fully attenuate or tolerate higher alcohol contents it has been shown that this property is strain-dependent.
General Information
Analysis was done on 10 different T. delbruckii strains on various types of stress resistance as well as the ability to metabolize different carbon sources. The strains tested and the results are shown below. [19]
Designation | Strain number/signature | Origin |
---|---|---|
T6 | RIBMa TdA | Wine |
T9 | DSMb 70504 | Sorghum Brandy |
T10 | CBSc 1146T | Unknown |
T11 | TUMd 214 | Bottle (Pils beer, trace contamination, no beer spoilage observed) |
T13 | TUMd TD1 | Wheat beer (starter culture) |
T15 | TUMd 138 | Cheese brine |
T17 | WYSC/Ge 1350 | Unknown |
T18 | CBSc 4510 | Unknown |
T19 | DSMb 70607 | Unknown |
T20 | CBSc 817 | Unknown |
Hop Resistance
The resistance to alpha acids were also measured among these 10 strains using 0 PPM, 50 PPM, and 90 PPM. All strains were found to be resistant to these levels of alpha acids not affecting their growth. Some strains however were shown to have slower growth rates in the presence of 90 PPM and more. [19]
Ethanol Resistance
All 10 strains were also tested for their ability to grow in 5-10% ethanol content. The table below shows that all but one strain was able to grow in presence of 5% total alcohol but one thing they all shared in common is their inability to grow when in the presence of 10% alcohol. [19]
Growth (+) positive; (−) negative.
Ethanol % | T6 | T9 | T10 | T11 | T13 | T15 | T17 | T18 | T19 | T20 |
---|---|---|---|---|---|---|---|---|---|---|
5% | - | + | + | + | + | + | + | + | + | + |
10% | - | - | - | - | - | - | - | - | - | - |
Sugar Utilization
During fermentation trials of these 10 strains mentioned, sugar content was measured both before and after fermentation via HPLC. Tests showed the the sugar utilization of T. delbruekii is very strain dependent. All but one of the strains were shown to not ferment maltose and maltotriose. Although these tests do not show if these strains are able to utilize lactose, Eureka Brewing's blog mentions that they are unable to metabolize it.[20] The table below shows the percentages of sugars metabolized in the test wort by each strain. [19]
Sugar Type | T6 | T9 | T10 | T11 | T13 | T15 | T17 | T18 | T19 | T20 |
---|---|---|---|---|---|---|---|---|---|---|
Fructose (%) | 93.2 | 92.3 | 91.5 | 88 | 91.6 | 90.2 | 84.5 | 96.4 | 93.6 | 88.1 |
Glucose (%) | 96.6 | 96.2 | 97 | 96.6 | 97.3 | 95.5 | 94.5 | 95.4 | 94.7 | 89.6 |
Sucrose (%) | 82.4 | 86.4 | 79 | 95 | 84.6 | 75.2 | 78.3 | 72 | 73.7 | 84.7 |
Maltose (%) | 3.3 | 94.8 | 5.8 | 6 | 1.8 | 0.3 | 0.9 | 2.5 | 0.7 | 0.3 |
Maltotriose (%) | 3 | 58.9 | 1.6 | 4.2 | .5 | 1.3 | 2.4 | 0.1 | 0.1 | 3.6 |
Cross Resistance
Again, all 10 strains growth was tested but this time with the presence of both 5% ethanol as well as 50 and 90 PPM of iso-alpha acid concentrations. Below you can see that with a combination of these two factors, growth was hindered in quite a few strains. [19]
Growth (+) positive; (−) negative.
IBU/ethanol % (v/v) | T6 | T9 | T10 | T11 | T13 | T15 | T17 | T18 | T19 | T20 |
---|---|---|---|---|---|---|---|---|---|---|
50/5 | - | + | - | + | - | + | + | + | + | - |
90/5 | - | - | - | + | - | + | + | + | + | - |
Wickerhamomyces spp.
See: Pichia spp.
Zygosaccharomyces spp.
Zygosaccharomyces spp. belongs to the group of hemiascomycetous (class of fungi in which no ascocarps are formed) yeasts with a high tolerance to osmotic stress. This typical feature enables it to grow in environments with high concentrations of salts and/or sugars, i.e. under conditions restrictive to most other yeast species. Z. bailii, Z. bisporous, Z. rouxii, and Z. florentinus are species which have been isolated in grape musts or wine. Some strains can be very tolerant to a wide range of stressors, including 50% sugar, 2.5% acetic acid, 18% ethanol, and pH 2.0. It is also resistant to preservatives commonly used in beverage production such as SO2. They are commonly mentioned as part of the "Flor" present in Sherry wines.
Bacteria
Leuconostoc
Leuconostoc is a genus of Gram-positive bacteria, placed within the family of Leuconostocaceae. They are generally ovoid cocci often forming chains. Leuconostoc spp. are intrinsically resistant to vancomycin and are catalase-negative (which distinguishes them from staphylococci). All species within this genus are heterofermentative and are able to produce Leuconostocfrom sucrose. They generally form exopolysaccharide. [21]
Oenococcus
Oenococcus is a genus of Gram-positive bacteria, placed within the family Leuconostocaceae. The only species in the genus was Oenococcus oeni (which was known as Leuconostoc oeni until 1995). In 2006, the species Oenococcus kitaharae was identified. As its name implies, Oenococcus holds major importance in the field of oenology(the science and study of wine and winemaking), where it is the primary bacterium involved in completing the malolactic fermentation. [22]
Oenococcus kitaharae
O. kitaharae is a lactic acid bacterium (LAB) that was isolated from composting distilled shochu residue produced in Japan. This species represents only the second member of the genus Oenococcus to be identified. O. kitaharae has the ability to ferment maltose, citrate and malate and the ability to synthesize specific amino acids such as L-arginine and L-histidine unlike some O. Oeni. In addition to these metabolic differences, the O. kitaharae genome also encodes many proteins involved in defense against both bacteriophage (restriction-modification and CRISPR) and other microorganisms (bacteriocins), and has had its genome populated by at least two conjugative transposons, which is in contrast to currently available genome sequences of O. oeni which lack the vast majority of these defense proteins. It therefore appears that the genome of O. kitaharae has been shaped by its need to survive in a competitive growth environment that is vastly different from that encountered by O. oeni, where environmental stresses provide the greatest challenge to growth and reproduction. [23]
Sugar Utilization -
One of the defining biochemical differences between O. kitaharae and O. oeni that was noted in its original isolation was the ability of O. kitaharae to produce acid from maltose. This trait is rare in O. oeni, which is formally classified as maltose negative. By comparing available whole-genome annotations for O. oeni with O. kitaharae, it was possible to identify several genes associated with sugar utilization that are deferentially present across the species. Of these, at least four genes which are present in O. kitaharae, but absent in the O. oeni genomes, are predicted to be involved in the utilization of maltose, providing a direct genetic basis for this phenotype. In addition to genes predicted to be involved in the species-specific utilization of maltose, there are several ORFs predicted to be involved in the metabolism of trehalose, D-gluconate, D-ribose and fructose that are specifically present in O. kitaharae. While the assimilation of these sugars is often carried out by specific strains of O. oeni, this genotypic data agrees well with biochemical tests performed previously that indicated that O. kitaharae was able to utilize all of these various carbon sources. [24]
Oenococcus oeni
Oenococcus oeni(also know as Leuconostoc oeni) is a Genus of Gram-positive LAB, ellipsoidal to spherical in shape that is primarily used in Malolactic Fermentation. Oenococcus oeni is a facultative anaerobe. It is able to use oxygen for cellular respiration but can also gain energy through fermentation. It characteristically grows well in the environments of wine, being able to survive in acidic conditions below pH 3.0 and tolerant of ethanol levels above 10%. Optimal growth occurs on sugar and protein rich media. Cells tend to grow in chains or pairs. O. Oeni is heterofermentative and generally produces CO2, Ethanol, Acetate, and Diacetyl. [25]
O. oeni ferments sugars using both the hexose-monophosphate and phosphoketolase pathways using the enzymes Glucose-6-phosphate and xylulose-5-phosphoketolase to from D(-)-lactic acid, CO2 and ethanol in equal amounts when metabolising D-glucose. O.oeni can convert pentose phosphate to acetic acid in an oxygen dependant reaction which requires NADP. It cannot metabolize polysaccharides and alcohols.
O. oeni can decarboxylate L-malate to L(+)-lactate, but cannot use it as a sole source of carbon. It requires the amino acids Glutamic acid, valine, guanine, adenine, xanthine, uracil, riboflavin, folic acid, nicotinic acid, thiamine, biotine and pantothenic acid. There is some variation of amino acid requirement between strains. [26]
Althought O. oeni has primarily been used for Malolactic Fermentation, trials with the White Labs culture(only one reported on so far) has show lactic acid production without the presence of malic acid. James Sites reported souring within a week at 70°F. [27]
Name | Mfg# |
---|---|
White Labs | Malolactic Culture |
Wyeast | Malolactic Blend |
CHR Hansen | Viniflora |
Weisella
See also:
Zymomonas mobilis
Zymomonas mobilis is a Gram negative, facultative anaerobic, non-sporulating, polarly-flagellated, rod-shaped bacterium. It is the only species found in the genus Zymomonas. It has notable bioethanol-producing capabilities, which surpass yeast in some aspects. It was originally isolated from alcoholic beverages like the African palm wine, the Mexican pulque, and also as a contaminant of cider and beer.[28]
Potential references
- http://beer.suregork.com/wp-content/uploads/2015/06/Poster-89.pdf - Bioflavoring by non-conventional yeasts in sequential beer fermentations http://www.sciencedirect.com/science/article/pii/S0740002017303763 and MTF comments - Bochman's published article on lactic acid producing yeast: http://www.sciencedirect.com/science/article/pii/S0740002017302952 - Performance of non-conventional yeasts in co-culture with brewers’ yeast for steering ethanol and aroma production (http://onlinelibrary.wiley.com/doi/10.1111/1751-7915.12717/epdf) - See Fig3B - Fugelsang K, Edwards C. Wine Microbiology. 1997. Available: http://link.springer.com/content/pdf/10.1007/978-0-387-33349-6.pdf - https://www.facebook.com/groups/MilkTheFunk/permalink/1336235339738010/?comment_id=1336277939733750&comment_tracking=%7B%22tn%22%3A%22R%22%7D - https://www.facebook.com/groups/MilkTheFunk/permalink/1337089182985959/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1346900285338182/ - http://www.sciencedirect.com/science/article/pii/S0963996916302332 - https://www.facebook.com/groups/MilkTheFunk/permalink/1366829093345301/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1365795896781954/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1380004022027808/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1284664904895054/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1400174630010747/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1420821137946096/ - http://www.sciencedirect.com/science/article/pii/S074000201630452X - https://www.facebook.com/groups/MilkTheFunk/permalink/1457271340967742/ - Review: Pure non-Saccharomyces starter cultures for beer fermentation with a focus on secondary metabolites and practical applications - https://www.facebook.com/groups/MilkTheFunk/permalink/1485339661494243/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1140282595999953/ - https://www.ncbi.nlm.nih.gov/pubmed/12102552 - https://www.facebook.com/groups/MilkTheFunk/permalink/1546044102090465/ - http://beer.suregork.com/?p=3860 - http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.001607 - https://www.facebook.com/groups/MilkTheFunk/permalink/1582089058485969/ - http://www.mbaa.com/publications/tq/tqPastIssues/2017/Pages/TQ-54-1-0215-01.aspx - http://biorxiv.org/content/early/2017/03/27/121103 - https://www.facebook.com/groups/MilkTheFunk/permalink/1640324282662446/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1659004047461136/ - https://www.facebook.com/groups/MilkTheFunk/permalink/1669790909715783/ - http://onlinelibrary.wiley.com/doi/10.1002/jib.381/full - http://www.asbcnet.org/publications/journal/vol/2017/Pages/ASBCJ-2017-2532-01.aspx - https://www.facebook.com/groups/MilkTheFunk/permalink/1680093658685508/ - http://onlinelibrary.wiley.com/doi/10.1002/yea.3146/abstract - https://mail.google.com/mail/u/1/?ui=2&ik=1b8e47c65b&view=att&th=15c548b66cda8ae6&attid=0.1&disp=safe&zw - https://www.facebook.com/groups/MilkTheFunk/permalink/1649825158379025/ - Pichia - http://www.sciencemag.org/news/2017/07/microbe-new-science-found-self-fermented-beer - Sherry Flor - https://www.facebook.com/groups/MilkTheFunk/permalink/1099692053392341/
See Also
Additional Articles on MTF Wiki
External Resources
References
- ↑ 1.0 1.1 1.2 Wild Pitch Yeast catalog. Retrieved 1/2/2018.
- ↑ Dr. Matt Bochman. Milk The Funk thread on Saucy Brew Works use of lactic acid yeast. 01/12/2018.
- ↑ Wikipedia. Debaryomyces. Retrieved 09/03/2015.
- ↑ Wikipedia. Debaryomyces hansenii. Retrieved 09/03/2015.
- ↑ 5.0 5.1 "The Original Flag Porter Story". Brewlab website. 01/20/2017. Retrieved 12/08/2017.
- ↑ 6.0 6.1 6.2 6.3 . Eureka Blog's Post on D. Hansenii, Retrieved 8/9/2017
- ↑ 7.0 7.1 7.2 . Production of ethanol and arabitol by Debaryomyces nepalensis: influence of process parameters. Himabindu Kumdam, Shweta Narayana Murthy and Sathyanarayana N Gummadi. 2013.
- ↑ 8.0 8.1 Saccharomyces cerevisiae, Non-Saccharomyces Yeasts and Lactic Acid Bacteria in Sequential Fermentations: Effect on Phenolics and Sensory Attributes of South African Syrah Wines. P.P. Minnaar, H.W. du Plessis, V. Paulsen, N. Ntushelo, N.P. Jolly, M. du Toit. 2017.
- ↑ 9.0 9.1 Lachancea thermotolerans as an alternative yeast for the production of beer. P.Domizio, J.F.House, C.M.L.Joseph, L.F.Bisson, and C.W.Bamforth. 2016.
- ↑ Bryan of Sui Generis Blog and Justin Amaral. Milk The Funk Facebook group post regarding the temperature range for L. thermotolerans. 10/22/2017.
- ↑ Justin Amaral and Bryan of Sui Generis blog. Milk The Funk post about the fermentation times for Lachancea thermotolerans. 11/6/2017.
- ↑ . Wikipedia, Obtained 8/1/17
- ↑ 13.0 13.1 . Pichia k Info. Source: Eureka Brewing Blog.
- ↑ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485917/. [Genome Sequence of Pichia kudriavzevii M12, a Potential Producer of Bioethanol and Phytase.]
- ↑ 15.0 15.1 . Identification of Pichia apotheca. Authors: Caiti Smukowski Heil, Joshua N. Burton, Ivan Liachko, Anne Friedrich, Noah A. Hanson, Cody L. Morris, Joseph Schacherer, Jay Shendure, James H. Thomas, Maitreya J. Dunham. 2017.
- ↑ Eukaryote Wiki. Retrieved 10/12/2017.
- ↑ S. pombe Micro Wiki. Retrieved 10/12/2017.
- ↑ Matt Bochman. Milk The Funk Facebook thread on S. pombe. 11/27/2017.
- ↑ 19.0 19.1 19.2 19.3 19.4 19.5 . Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Maximilian Michel, Jana Kopecká. 2016.
- ↑ Eureka's Blog post about T. Delbruecki, 02/10/2014 .
- ↑ .
- ↑ .
- ↑ Identifcation of O. Kitaharae, Authors: Akihito Endo1, Sanae Okada1 10/1/2006 .
- ↑ . Functional Divergence in the Genus Oenococcus as Predicted by Genome Sequencing of the Newly-Described Species, Oenococcus kitaharae, Authors Anthony R. Borneman, Jane M. McCarthy, Paul J. Chambers, Eveline J. Bartowsky 01/3/2012 .
- ↑ "Oenococcus oeni". Microbe Wiki. Retrieved 07/20/2017.
- ↑ . UC Davis General Info on O. Oeni (No Date Given) .
- ↑ James Site. Milk The Funk Facebook group. 08/04/2015.
- ↑ Zymomonas mobilis .