Difference between revisions of "Aging and Storage"
m |
m |
||
Line 31: | Line 31: | ||
==Chemical Changes== | ==Chemical Changes== | ||
− | ===Effects of Oxygen=== | + | ===General Effects of Oxygen=== |
(This is probably the most important thing to talk about first.) | (This is probably the most important thing to talk about first.) | ||
Revision as of 23:07, 30 April 2017
Overview of goals: https://www.facebook.com/groups/MilkTheFunk/permalink/1640076039353937/
BEGIN ROUGH DRAFT
(In progress) For this page, Aging and Storage will refer to the conditioning and aging of beer in its final package (bottle, keg, etc.). The conditioning process includes the changes that take the beer from its state at packing to the state in which it is intended to consumed. The term aging will be used on this page to discuss changes in the conditioned beer as it is aged further. Storage conditions and their advantages and disadvantages will be discussed. Aging of beer before packaging is discussed in various brewing pages on the wiki and will not be discussed here.
For simplicity, this page will mostly refer to what is going on in a bottle, but the same changes and processes occur in other package types, albeit at different rates, and 'bottle' can be replaced with 'keg' or another final package.
Contents
Best Practices for Storage
This could be an overview for customers, retailers, and distributors. The sections below can give more technical/detailed information.
See Techniques of Cellaring below for more information.
Bottle conditioning
(in progress)
Bottle conditioning is the process and changes that take a beer at packaging time to beer that is ready to drink. This can include the development of carbonation, microbial growth, development and reprocessing of off flavors, 'bottle shock' and other changes. Bottle conditioning, at least for the initial period where carbonation is generated, is typically carried out at warmer temperatures than extended aging after the conditioning is done.
Techniques of Cellaring
Cellaring, or extended age in the bottle once the beer is ready to drink, is common for many mixed fermentation beers. Cellaring is typically carried out at cooler temperatures.
Bottles vs Kegs
Corks vs Caps
Bottle Orientation
- Brandon Jones article on corked bottle storage (verticle vs horizontal) with comments from Belgian lambic brewers.
- Pierre Tilquin explains that horizontal storage for corked bottles results in no Pellicle formation in the bottle [1].
- As with wine and champagne, some recommend storing beer that uses natural corks horizontal to keep them from drying out. This allows them to keep a tight seal and either horizontal or vertical for synthetic corks (it doesn't matter for synthetic corks) [2][3].
- Jeff Porn observes accelerated flavor development (good or bad) when comparing bottles that are stored horizontally versus ones stored vertically [4]. This is also the experience of Brasserie Dupont.
Chemical Changes
General Effects of Oxygen
(This is probably the most important thing to talk about first.)
Acids and Esters
Cover microbiologically driven changes: over-attenuation, Brett expression under pressure, autoylsis
pH change in the bottle?
http://www.sciencedirect.com/science/article/pii/S0740002014002548
Phenols
Phenols are a large class of organic compounds. One way that phenols can be classified is by how many carbon atoms they include (see the phenols Wikipedia article). Examples of classes of phenols include the phenol (the simplest form of phenols with 6 carbon atoms), hydroxycinnamic acids (ferulic acid, caffeic acid, etc.), and complex polyphenols (multiple phenol structure units) [5][6]. Many phenols have an impact on beer aging or are impacted by beer aging.
Phenolic Monomers
Phenolic monomers include phenolic acids (also known as "hydroxycinnamic acids"), flavonols, and volatile phenols (4-vinylphenol, 4-vinylguaiacol, 4-vinylcatechol, and their ethyl derivative) [7].
Hydroxybenzoic acids (e.g. vanillic acid, gallic acid, syringic acid) and hydroxycinnamic acids (e.g. p-coumaric, acid, ferulic acid, sinapic acid, caffeic acid) are extracted from polysaccharides within the cell walls of malted grains during the mashing process, and are generally considered to have some antioxidant qualities, however at least one study found that they did not positively impact the oxidative reactions in aging beer (some phenolic acids are antioxidants, but others are oxidizers, and the net result is possibly a non-effect of oxidation and preventing oxidation). They generally do not impact flavor because of their high flavor threshold in beer (52 ppm for p-coumaric acid, 66 ppm for ferulic acid), however yeast metabolism can lead to flavorful volatile phenols such as 4-vinylphenol (plastic) and 4-vinylguaiacol (clove flavor; 0.3 ppm flavor threshold in beer) [7].
The aging of volatile phenols in bottled beer hasn't received much attention from science. One study looked at the evolution of various volatile phenols in several Belgian beers, including one Trappist beer that was conditioned with Brettanomyces (probably Orval). All beers were aged at 20°C/68°F in a dark room. The study found that Belgian beers that did not contain Brettanomyces and that had a high levels of 4-vinylguaiacol (4VG) saw a drop of about 50% between months 3 and 6, and then a very slow increase from months 6 to 14. This also corresponded with a fairly sharp increase of vanillan beginning after 6 months. This decrease in 4VG and increase in vanillan was suggested to be caused by both the oxidation of 4VG and acid hydrolysis of glycosides. Both guaiacol (roasted coffee flavor) and 4-methylphenol (burnt flavor) saw a sharp rise after 6 months to 14 months of aging, particularly in the dark Belgian beers (from 6 to 15 ug/L and 2 to 5 ug/L respectfully) [8].
For the Belgian beer that was conditioned with Brettanomyces, 4-ethylphenol (4EP), which is responsible for the plastic off-flavor in beers and wine with Brettanomyces, steadily increased from 1500 ug/L to 2000 ug/L from when bottled to 3 months. From month 3 to 6, the level of 4EP was stable. From month 6 to 14, 4EP showed a steady decline from 2000 ug/L to 500 ug/L, indicating that 4EP can age out of bottled beers. The phenol 4-ethylguaiacol (4EG) was steady at 1600 ug/L with only a very slight increase from bottling date until 6 months. From month 6 to month 14, 3EG dropped from 1600 ug/L to 1200 ug/L. This indicates that 4EG is relatively stable compared to 4EP, but is not immune to breaking down [8].
Tannic Acid
Tannic acid is a subclass of tannin (tannins are a subclass of polyphenols). Tannic acid is generally extracted from four sources: Chinese gallnuts, Aleppo gallnuts (these both produce gallic acid), Sumac leaves, and Tara pods (produces quinic acid). Forms of tannic acid can also be extracted from oak galls (seeds from oak trees) and oak bark [9]. Tannic acid extracts are of interest to the brewing industry because they have been found to improve flavor stability through its antioxidant Properties. Specifically these properties include free radical scavenging activity, bonding of the metals involved in beer staling (specifically iron ions and perhaps copper ions), and preventing oxidative degradation of lipids that produce the aldehydes such as trans-2-nonenal (trans-2-nonenal is responsible for the papery/cardboard off-flavor in stale beer). Tannic acid also increases colloidal stability (clarity over time) by binding with the proline-rich proteins that cause chill haze. The higher molecular weight tannic acids (Chinese gallnuts or Sumac leaves) will reduce chill haze by removing these proteins, while medium molecular weight tannic acids (Allepo gallnuts) can result in a stable haze for beer styles where some haze is desirable such as Belgian Wit or German Hefeweizen [10].
One study showed that adding gallic acid (tannic acid from Chinese or Aleppo gallnuts) during the mash and sparge water extended the shelf life of beer by reducing off-flavors such as trans-2-nonanol, the aldehyde responsible for the papery taste in stale beer. It also bound to proteins containing thiols that when oxidized during mashing can cause filtering and amylolytic issues, and settled them out during the mashing/boiling which made filtration easier. The study determined that the tannic acid did not have an impact on the saccharification rest or the soluble protein content (including head retention proteins). It did have a very slightly negative impact on yeast attenuation, however the addition of zinc resolved the attenuation issue (it is thought that the gallic acid dropped the zinc out of solution since it binds with metals, and thus negatively impacted the yeast's health) [11].
The sensory analysis in this study showed that all of the fresh beers with or without gallic acid scored positively by tasters, although they preferred the beers with gallic acid because of their "fullness of taste and mouthfeel". After 5 days of storage at 40°C, the beers with gallic acid continued to rate high while the non-gallic acid beers began to show signs of staling (darker in color, cardboard flavor, slight sweetness, and a sharp unpleasant bitterness). After storing the beers for 10 days at 40°C the non-gallic beers were clearly more oxidized. These results were confirmed by also storing the beers for one year at 4°C in the dark; the beers with gallic acid were always preferred by tasters. The beers with gallic acid added during the mashing and sparging had better flavor stability, and better stability of hop compounds such as iso-alpha acids. They also had a higher polyphenol content from the malts (only hop extract was used, so the polyphenol content had to come from the malts). The lipoxygenase activity (LOX), which is the mechanism by which lipids are oxidized to create off-flavors, was also decreased in the beers with gallic acid added. They also found that the "Strecker" and "Maillard" derived aldehydes phenylacetaldehyde, furfural, benzaldehyde were reduced by the use of gallic acid (fatty-acid derived aldehydes were not reduced, but there is evidence that these are already present in malt and are not formed during the mashing process, unlike the previously mentioned aldehydes). Trans-2-nonenal (papery, cardboard staling flavors) was also reduced in beers brewed with gallic acid. The study found that mashing with gallic acid at 62°C and 5.3 pH had the most positive impacts on both flavor stability and the prevention on off-flavor development [11].
Tannic acid products are now being sold in the brewing industry, such as Brewtan B which contains gallic acid extracted from oak galls without the impurities that can often be found in other commercial tannic acid products. This manufacturer claims that the product enhances initial clarity of wort and colloidal stability of beer over time, stabilizes hop bitterness, reduces aldehyde formation, and increases flavor and color stability over time. The dosage for this product is quite low at 1.5–4.0 g/hL [10]. Author Denny Conn of Experimental Brewing has noted that the use of Brewtan B increases the mouthfeel and flavor stability of beer [12]. Brewtan B specs and usage can be found here.
Hop Compounds
IBU Degradation
Lightstruck
http://www.scielo.br/scielo.php?pid=S0100-40422000000100019&script=sci_arttext&tlng=es
http://onlinelibrary.wiley.com/doi/10.1002/j.2050-0416.2002.tb00568.x/abstract
http://www.professorbeer.com/articles/skunked_beer.html
Other Flavor and Non-flavor Compounds
Cover lifespan and effects of: THP (reference THP page), diacetyl, proteins, enzymes, gluten(?), effects of different levels of CO2.
Pediococcus 'sickness'
- See the Pediococcus page.
Microbial Survival and Changes
Cover what we know the about survival rate of different microbes, and connect them to the above sections if they have an impact.
See also Commercial Sour Beer Dregs Inoculation.
See Also
Additional Articles on MTF Wiki
MTF Facebook Discussions
- Devin Bell's facebook discussion about aging in bottles
- Discussion about how long it takes to develop carbonation
External Resources
References
- ↑ Conversation with Pierre Tilquin on MTF regarding horizontal bottle storage. 01/08/2016.
- ↑ Wikipedia. Storage of Wine. Retrieve 04/14/2016.
- ↑ Conversation with Raf Soef on horizontal bottle storage for natural corks. 0414/2016.
- ↑ Conversation with Jeff Porn on horizontal corked bottle storage. 04/14/2016.
- ↑ Phenols. Wikipedia website. Retrieved 04/17/2017.
- ↑ Polyphenol. Wikipedia website. Retrieved 04/17/2017.
- ↑ 7.0 7.1 The Effect of Hydroxycinnamic Acids and Volatile Phenols on Beer Quality. S. E. Iyuke, E. M. Madigoe, and R. Maponya. 2008.
- ↑ 8.0 8.1 Guaiacol and 4-methylphenol as specific markers of torrefied malts. Fate of volatile phenols in special beers through aging. Scholtes C, Nizet S, Collin S. 2014.
- ↑ Tannic acid. Wikipedia website. Retrieved 04/17/2017.
- ↑ 10.0 10.1 Use of Tannic Acid in the Brewing Industry for Colloidal and Organoleptic Stability. Joseph A. Formanek and Pieter Bonte. MBAA Technical Quarterly. 2017.
- ↑ 11.0 11.1 Evaluation of the Addition of Gallotannins to the Brewing Liquor for the Improvement of the Flavor Stability of Beer. Guido Aerts, Luc De Cooman, Gert De Rouck, Zoltan Pénzes, Annemie De Buck, Roger Mussche, and Joseph van Waesberghe. 2004.
- ↑ "Episode 25 - BrewTan Your Questions Away". Experimental Brewing podcast (~25 minutes in). Retrieved 04/17/2017.