13,757
edits
Changes
→Pichia kluyveri
- https://www.researchgate.net/publication/337907047_Screening_for_the_Brewing_Ability_of_Different_Non-Saccharomyces_Yeasts
- https://onlinelibrary.wiley.com/doi/abs/10.1111/ijfs.14399
- https://www.intechopen.com/online-first/1164468
- https://www.cell.com/heliyon/fulltext/S2405-8440(24)13629-8
- https://www.sciencedirect.com/science/article/pii/S0023643824010867
'''Under progress'''
* [https://www.facebook.com/groups/MilkTheFunk/permalink/2872732672754928/ Jeremy Myers post on MTF.]
* [https://www.facebook.com/groups/MilkTheFunk/permalink/2872732672754928/?comment_id=2875014469193415&comment_tracking=%7B%22tn%22%3A%22R%22%7D Federico Tondini, the Scientific Coordinator for AEB, gives an overview of how to use this strain in beer and fermentation characteristics and answers any questions about this strain on MTF.]
|-
|}
=== [[Apex Cultures]] ===
{| class="wikitable sortable"
|-
! Product Name !! Taxonomy !! Attenuation !! Flocculation !! Starter Note !! Fermentation/Other Notes
|-
| Special Sour (Sour Ale) || ''Lachancea thermotolerans'' || 30 || Medium || || Special Sour is a natural yeast strain that produces lactic acid while initiating alcoholic fermentation, in a novel, easy-to-reproduce process for any sour-like beer. Special Sour is an indigenous yeast, isolated from Burgundy premium grapes, which produces high concentration of lactic acid.
|-
|}
=== [[Cellar Science]] ===
{| class="wikitable sortable"
|-
! Product Name !! Taxonomy !! Attenuation !! Flocculation !! Starter Note !! Fermentation/Other Notes
|-
| ACID Dry Beer Yeast || ''Lachancea thermotolerans'' || 75-80 || High || ACID yeast is designed to be sprinkled directly onto the surface of your wort with no oxygenation required in the initial fermentation. Our aerobic growth process makes this possible by creating dry yeast with high viability and high sterol levels. ACID yeast is pre-loaded with essential nutrients to ensure a successful, complete fermentation. While not required, some brewers prefer to rehydrate yeast. To hydrate yeast, first, sanitize the yeast brick and scissors. Use 10 grams of sterilized tap water between 85-95°F (29-35°C) mixed with 0.25 grams of FermStart per gram of yeast. Sprinkle yeast on the water. Allow the slurry to stand undisturbed for 20 minutes, then swirl. Use small amounts of wort to adjust to within 10°F (6°C) of wort temperature before pitching. Ferment between 66–77°F (19–25°C). ||
|-
|}
==Yeasts==
===''Candida'' spp===
====''Candida glabrata''====
A strain of ''Candida glabrata'' was selected in a study for its high beta-glucosidase activity, its tolerance to ethanol, and its ability to utilize maltose, and was shown to produce novel flavor characteristics in beer fermentation, including a significant increase in geraniol <ref>[https://www.sciencedirect.com/science/article/abs/pii/S0308814622026887#f0020 Application of non-Saccharomyces yeasts with high β-glucosidase activity to enhance terpene-related floral flavor in craft beer. Xiaoyu Han, Qiuxing Qin, Chenyu Li, Xiaoxuan Zhao, Fangxu Song, Mengjiao An, Ying Chen, Xiuqin Wang, Weidong Huang, Jicheng Zhan, Yilin You. 2022.]</ref>.
===''Cyberlindnera'' spp.===
===''Kluyveromyces''===
- https://www.sciencedirect.com/science/article/abs/pii/S0740002022001782
Many species of ''Kluyveromyces'' have been to biotransform monoterpenes found in hop oils (see [[Hops#Hop_Derived_Compounds_In_Beer_and_Biotransformations|Hop Biotransformations]]).
See also:
* [https://www.youtube.com/watch?v=ERrI0ktxRp0 "5 Tips for Fermenting with Philly Sour" by Lallemand Brewing on YouTube] and [https://www.crowdcast.io/e/philly-sour-launch Dr. Matthew Farber's webinar].
* [https://www.milkthefunk.live/podcast/2021/2/26/episode-012-dr-bryan-heit-of-sui-generis-brewing-blog-joins-us-to-talk-philly-sour MTF The Podcast episode #012 with Dr. Bryan Heit on Philly Sour]. Also see [http://suigenerisbrewing.com/index.php/2021/02/12/diving-deep-in-to-philly-sour/ his deep dive] blog article on the biology of this product and strategies for repitching it.
* [https://www.facebook.com/groups/MilkTheFunk/permalink/1366829093345301/ Post 1] and [https://www.facebook.com/groups/MilkTheFunk/permalink/1380004022027808/ Post 2] on ''Lachancea thermotolerans'' that can produce significant lactic acid without modification.
- Bochman et al. (2018) paper: https://www.sciencedirect.com/science/article/pii/S0740002017302952
- Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine: https://www.academia.edu/20392016/Lachancea_thermotolerans_and_Saccharomyces_cerevisiae_in_simultaneous_and_sequential_co_fermentation_A_strategy_to_enhance_acidity_and_improve_the_overall_quality_of_wine?email_work_card=title
- https://www.mdpi.com/2306-5710/9/1/20
- https://www.mdpi.com/2311-5637/10/4/180
- https://link.springer.com/article/10.1007/s10068-024-01769-9
====''Lachancea fermentati''====
====''Pichia kluyveri''====
Proposed to be useful in the production of non-alcoholic beer. See [https://www.facebook.com/groups/MilkTheFunk/permalink/2336842936343907/ this MTF thread] on suspecting this yeast to be the one used in a recent Mikkeller [https://blog.mikkeller.dk/mikkeller-launches-a-new-style-of-alcohol-free-beer?fbclid=IwAR2LfBxi-1YyrMYXuhR8BIauCjcxWNOW2-L8HBu0m5BB-q3i77-j74w4Dm4 non-alcoholic beer called "Henry and His Science"]. See also this [https://www.masterbrewerspodcast.com/272 MBAA Podcast on brewing NA beer at Sam Adams].
* [https://www.facebook.com/groups/MilkTheFunk/permalink/2745933662101497/ This MTF thread by Brendan Pleskow] explores the possibility of producing significant ethanol with this species using BSG Amylo™ enzyme.
* [https://www.chr-hansen.com/en/food-cultures-and-enzymes/fermented-beverages/cards/product-cards/frootzen-first-ever-pichia-kluyveri-yeast Chr Hansen Frootzen® is claimed to be a high thiol producer.] * [https://beersmith.com/blog/2023/02/28/non-alcoholic-beer-and-yeast-with-janish-and-carlsen-beersmith-podcast-276/ Non Alcoholic Beer and Yeast with Janish and Carlsen – BeerSmith Podcast #276.] - https://www.mdpi.com/2311-5637/11/3/148
====''Pichia kudriavzevii''====
* [https://www.facebook.com/groups/MilkTheFunk/permalink/3361360907225433/ MTF write ups by Cory Widmayer of the fermentation process for traditional Jamaican rum, with an emphasis on aromatic mold (''Thielaviopsis ethacetica'') and ''Schizosaccharomyces pombe''.]
* [https://www.facebook.com/groups/592560317438853/?multi_permalinks=4925298390831669 MTF post by Cory Widmayer on isolation and identification techniques for ''S. pombe''.]
* [https://www.facebook.com/groups/MilkTheFunk/posts/49348873898727695842191532475679/ Cory Widmayer's experiments and guide brewing beer with ''S. pombe'' (see comments for links to Cory's other threads).]* [https://www.facebook.com/groups/MilkTheFunk/posts/7179325622095590/ Cory Widmayer's first attempt at using ''S. pombe'' to make whiskey.]
===''Torulaspora delbrueckii''===
- https://www.facebook.com/groups/MilkTheFunk/permalink/2037872376240966/
- https://www.tandfonline.com/doi/abs/10.1080/03610470.2021.2025327
- https://www.mdpi.com/2311-5637/10/12/657
''Torulaspora delbrueckii'' is species of yeast, that is round to ovoid in shape and has been traditionally used in some wine fermentations to increase the complexity. Most of the commercial ''Torulaspora'' species and strains were isolated from soil, fermenting grapes (wine), berries, agave juice, tea-beer, apple juice, leaf of mangrove a tree, moss, lemonade and tree barks. Although it was said that most ''T. delbrueckii'' strains would not fully attenuate or tolerate higher alcohol contents it has been shown that this property is strain-dependent.
====General Information====
An analysis was done on 10 different ''T. delbruckiidelbrueckii'' strains on various types of stress resistance as well as the ability to metabolize different carbon sources. The strains tested and the results are shown below.
<ref name="10 strain TD">[http://onlinelibrary.wiley.com/doi/10.1002/yea.3146/full . Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Maximilian Michel, Jana Kopecká. 2016.]</ref>
{| class="wikitable sortable"
|-
! Designation <ref name="10 strain TD"></ref> !! Strain number/signature !! Origin
|-
| T6 || RIBMa TdA || Wine
|-
|}
=====Hop Resistance=====
|-
|}
===''Propionibacterium ''===
One study reported elevated levels of vitamin B12 produced in a two-stage fermentation first with ''Propionibacterium freudenreichii'' and then ''Saccharomyces'' yeast. The reported beers were reportedly not significantly different in the sensory profiles of the beers <ref>[https://www.sciencedirect.com/science/article/pii/S2212429224022387 Iida Loivamaa, Maija Greis, Vertti Nikander, Minnamari Edelmann, Marjo Pöysä, Pekka Varmanen, Per E.J. Saris. Two-step fermentation to produce vitamin B12 containing beer using Propionibacterium freudenreichii and yeast. Food Bioscience, Volume 63, 2025, 105807, ISSN 2212-4292. https://doi.org/10.1016/j.fbio.2024.105807.]</ref>.
===''Weisella''===