318
edits
Changes
no edit summary
Sugar Utilization -
One of the defining biochemical differences between O. kitaharae and O. oeni that was noted in its original isolation was the ability of O. kitaharae to produce acid from maltose. This trait is rare in O. oeni, which is formally classified as maltose negative. By comparing available whole-genome annotations for O. oeni with O. kitaharae, it was possible to identify several genes associated with sugar utilization that are deferentially present across the species. Of these, at least four genes which are present in O. kitaharae, but absent in the O. oeni genomes, are predicted to be involved in the utilization of maltose, providing a direct genetic basis for this phenotype. In addition to genes predicted to be involved in the species-specific utilization of maltose, there are several ORFs predicted to be involved in the metabolism of trehalose, D-gluconate, D-ribose and fructose that are specifically present in O. kitaharae. While the assimilation of these sugars is often carried out by specific strains of O. oeni, this genotypic data agrees well with biochemical tests performed previously that indicated that O. kitaharae was able to utilize all of these various carbon sources.<ref name="Functional Divergence in the Genus Oenococcus as Predicted by Genome Sequencing of the Newly-Described Species, Oenococcus kitaharae">[http://journals.plos.org/plosone/article/authors?id=10.1371/journal.pone.0029626. Anthony R. Borneman, Jane M. McCarthy, Paul J. Chambers, Eveline J. Bartowsky. 1/3/2012.]</ref>
====Oenococcus oeni====