Changes

Jump to: navigation, search

Glycosides

41 bytes added, 15:55, 28 June 2016
no edit summary
Many strains of ''B. bruxellensis'' have also been found to have varying degrees of intracellular or parietal (attached to the cell wall) beta-glucosidase activity. ''Brettanomyces'' has more strains that can produce beta-glucosidase than other genera of yeast, and the strains generally also have a higher rate of beta-glucosidase activity than other genera of yeast <ref>[http://link.springer.com/article/10.1038/sj.jim.2900720 Quantification of glycosidase activities in selected yeasts and lactic acid bacteria. H McMahon, B W Zoecklein, K Fugelsang, Y Jasinski. 1999.]</ref><ref name="Mansfield"></ref>. Strains with higher beta-glucosidase activity have been isolated from lambic, suggesting that these strains may have an adapted ability to utilize sugar from glycosides <ref name="Vervoort">http://onlinelibrary.wiley.com/wol1/doi/10.1111/jam.13200/abstract Characterization of the recombinant Brettanomyces anomalus β-glucosidase and its potential for bioflavoring. Yannick Vervoort, Beatriz Herrera-Malaver, Stijn Mertens, Victor Guadalupe Medina, Jorge Duitama, Lotte Michiels, Guy Derdelinckx, Karin Voordeckers, and Kevin J. Verstrepen. 2016.]</ref>. Some ''Brettanomyces'' strains may only be capable of beta-glucosidase activity, and not the other enzymes which are needed to break down disaccharide type glycosides. Additionally, cell death and autolysis can result in an increase in beta-glucosidase activity in solution due to the cell contents being released into solution <ref name="Mansfield"></ref>. Strains that can metabolize cellobiose tend to also have higher beta-glucosidase activity because the possess an extra gene for beta-glucosidase enzyme production <ref name="Crauwels1">[http://link.springer.com/article/10.1007/s00253-015-6769-9 Comparative phenomics and targeted use of genomics reveals variation in carbon and nitrogen assimilation among different Brettanomyces bruxellensis strains. S. Crauwels, A. Van Assche, R. de Jonge, A. R. Borneman, C. Verreth, P. Troels, G. De Samblanx, K. Marchal, Y. Van de Peer, K. A. Willems, K. J. Verstrepen, C. D. Curtin, B. Lievens. 2015]</ref>.
Sensory analysis of beers with cherries or hops have shown that there is a significantly detectable difference between cherry beers that have been exposed to beta-glucosidase from one strain of ''B. anomala'' versus not exposed to the enzyme, but not pellet no significant difference was found in beers hopped beerswith pellets. The cherry beers exposed to the enzyme contained more and above odor threshold eugenol (clove, honey aroma), benzyl alcohol (sweet, flower), benzaldehyde (almond, cherry) than cherry beers that were not exposed to the enzyme. The cherry beers exposed to the enzyme were not only identified in a blind tasting, but were also preferred to the cherry beers without exposure to the enzyme, indicating that beta-glucosidase activity in cherry beers provides a significant flavor difference. Other types of beta-glucosidase enzymes released different levels of different flavor compounds, indicating that the source (bacteria or yeast) of the enzyme make a significant difference in the flavors that are produced <ref name="Vervoort"></ref>.
==See Also==

Navigation menu