Changes

Jump to: navigation, search

Lactobacillus

342 bytes added, 11:48, 27 May 2016
m
no edit summary
Both primary and secondary metabolites play a large role in the flavor and aroma profile of wort fermented with ''Lactobacillus''. Secondary metabolites are compounds that are not directly related to growth of an organism, but often assist with survival <ref>[http://www.ncbi.nlm.nih.gov/pubmed/11036689 The natural functions of secondary metabolites. Demain AL, Fang A. 2000.]</ref>. These secondary metabolites are produced by the pathways mentioned above, and different strains probably regulate the enzymes involved in various pathways differently and produce different secondary metabolites <ref>Private correspondence with Richard Preiss from Dan Pixley. 12/29/2015.</ref>. Thus, different species and strains can produce a wide variety of flavors and aromas (compare this to food grade lactic acid in which none of these secondary metabolites exist).
An example from one study showed that ''L. plantarum'' produced significantly more diacetyl, acetoin(yogurt-like flavor), and acetaldehyde than ''L. reuteri'' and ''L. brevis''. These three compounds were associated with dairy-related notes of "buttery", "lactic", and "yogurt" flavors identified during sensory testing <ref name="Peyer"></ref>. Some LAB can release these compounds through the catabolism of citric acid, which is found in wort. Ester production is generally insignificant, although significant ester formation has been found during malolactic fermentation in red wines, and ethyl acetate has been found to be produced in malt based beverages <ref name="peyer_review">[http://www.sciencedirect.com/science/article/pii/S0924224415300625 Lactic Acid Bacteria as Sensory Biomodulators for Fermented Cereal-Based Beverages. Lorenzo C. Peyer , Emanuele Zannini , Elke K. Arendt. 2016.]</ref>. Some strains may also produce fusel alcohols and other off-flavors. For example the referenced study found an accumulation of the fusel alcohol n-Porponal in the sample of ''L. reuteri'', and a small decrease of isovaleric acid coupled with a small increase of [https://en.wikipedia.org/wiki/Hexanoic_acid hexanoic acid] by ''L. brevis'', ''L. plantarum'', and ''L. reuteri'' (only 0.25-0.32 mg/L was found, and the flavor threshold of hexanoic acid is 5.4 mg/L <ref>[http://www.leffingwell.com/odorthre.htm Leffingwell & Associates website. Odor Thresholds. Retrieved 12/30/2015.]</ref>) <ref name="Peyer"></ref>. Heterofermentative species can also produce [[Tetrahydropyridine|tetrahydropyridines (THP)]], which is the cause of "mousy" off-flavors <ref name="Costello">[http://pubs.acs.org/doi/abs/10.1021/jf020341r Mousy Off-Flavor of Wine:  Precursors and Biosynthesis of the Causative N-Heterocycles 2-Ethyltetrahydropyridine, 2-Acetyltetrahydropyridine, and 2-Acetyl-1-pyrroline by Lactobacillus hilgardii DSM 20176. Peter J. Costello and Paul A. Henschke. 2002.]</ref>.
The type of grain that the ''Lactobacillus'' is fermented in may also play a role in the types and amounts of secondary metabolites that are produced. One study compared volatile acids produced by a probiotic strain of ''L. plantarum'' (NCIMB 8826) when fermented in oats, barley, malted barley, and wheat. In oats, there was slight increase in oleic acid and linoleic acid and a decrease when fermented in wheat, barley, or malted barley. In malted barley, there were small increases in flavor active compounds such as furfural, 2-ethoxyethyl acetate and isoamyl alcohol, but little to none detected when fermented in oats, wheat, or unmalted barley. Acetic acid production was higher in barley and malted barley than it was in oats and wheat. Many other organic acids in the oats, wheat, barley, and malted barley were supposedly taken up by the ''L. plantarum'' during fermentation. In barley, there were trace amounts of new acids created that were not already in the barley itself <ref>[http://www.sciencedirect.com/science/article/pii/S0308814609004373 Volatile compounds produced by the probiotic strain Lactobacillus plantarum NCIMB 8826 in cereal-based substrates Ivan Salmeron, Pablo Fuciños, Dimitris Charalampopoulos, Severino S. Pandiella. 2009.]</ref>.

Navigation menu