Changes

Jump to: navigation, search

Tetrahydropyridine

1 byte added, 22:36, 26 August 2015
m
no edit summary
[[File:THP Pathway.JPG|thumb|400|Proposed pathway for THP production <ref name="Elsevier">[https://books.google.com/books?hl=en&lr=&id=KJJwAgAAQBAJ&oi=fnd&pg=PA346&dq=brettanomyces+Tetrahydropyridine&ots=ktbn8PR_fF&sig=r3lkcV-gBa-pK86HSOgFDVIJVDk#v=onepage&q=brettanomyces%20Tetrahydropyridine&f=false Managing Wine Quality: Oenology and Wine Quality. A Reynolds Elsevier, Sep 30, 2010. Pg 359.]</ref>]]
[[Brettanomyces]], [[Lactobacillus]], and [[Pediococcus]] can produce forms of ''Tetrahydropyridine''. In Brettanomyces, ATHP and ETHP are produced by metabolizing the amino acids L-Lysine and D-Lysine, along with ethanol. Oxygen has a stimulatory effect in it's production, but this is probably because ''Brett'' has a higher biomass formation under aerobic conditions <ref>[http://www.brettanomycesproject.com/dissertation/introduction/ Yakobson, Chad. The Brettanomyces Project; Introduction. Retrieved 3/10/2015.]</ref><ref>[http://pubs.acs.org/doi/abs/10.1021/jf071243e The Role of Lysine Amino Nitrogen in the Biosynthesis of Mousy Off-Flavor Compounds by Dekkera anomala. Paul R. Grbin, Markus Herderich, Andrew Markides, Terry H. Lee, and Paul A. Henschke. J. Agric. Food Chem., 2007.]</ref><ref name="Oelofse">[http://scholar.sun.ac.za/handle/10019.1/8437 Significance of Brettanomyces and Dekkera during Winemaking: A Synoptic Review. A. Oelofse, I.S. Pretorius, and M. du Toit. 2008.]</ref>. The level of THP production varies widely between species and strains of ''Brett'', with some strains not producing it at all and some producing very high amounts above taste threshold. Additionally, THP production in the presence of higher glucose and fructose levels, which explains why THP may be seen more often in stuck wine fermentations rather than wine that has finished fermenting <ref>[http://www.ncbi.nlm.nih.gov/pubmed/18194246 Growth and volatile compound production by Brettanomyces/Dekkera bruxellensis in red wine. Romano A, Perello MC, de Revel G, Lonvaud-Funel A. J Appl Microbiol. 2008 Jun.]</ref>.
ATHP is further metabolized into 2-ethyltetrahydropyridine (ETHP/ETPY) by Brettanomyces, although not much is known about this metabolic process <ref>[http://ucce.ucdavis.edu/files/repositoryfiles/Joseph_5_Aromatic_Diverswity_of_Brettanomyces-82350.ppt Joseph, C.M. Lucy. ''Aromatic Diversity of Brettanomyces''. U.C. Davis. Retrieved 3/10/2015.]</ref>. ETHP has a significantly higher taste threshold, and is often not detected in contaminated wine <ref name="Oelofse"></ref>.

Navigation menu