13,703
edits
Changes
no edit summary
Currently, research into how well ''Brettanomyces'' strains ferment the trisaccharide maltotriose has not been explored much by science. However, one study found that ''B. custersianus'' can ferment maltotriose. Another study found that all 7 strains of ''B. bruxellensis'' tested could ferment maltotriose, but not the trisaccharide raffinose. More investigation into this possibility is needed <ref>[http://www.asbcnet.org/events/archives/2015Meeting/proceedings/Pages/54.aspx Determination of sugar metabolism profiles of non-traditional yeasts in the Saccharomyces and Brettanomyces families. J. D. Cook, W. A. DEUTSCHMAN. ASBC Proceeding. 2015.]</ref><ref name="Crauwels1"></ref>.
Just like in other yeast species, the temperature has a direct effect on the rate of fermentation for ''Brettanomyces''. The optimal fermentation rate temperature range for ''Brettanomyces'' is between 22-32°C (77-90°F). However, one study by Tyrawa et al. found that several strains of ''B. bruxellensis'' fermented at 30°C "smelled terrible" of aromas typical of sulfur and autolysis <ref name=" Tyrawa_2017" /><ref>[https://www.facebook.com/groups/MilkTheFunk/posts/5684564058238428/?comment_id=5684866488208185&reply_comment_id=5692967664064734 Richard Preiss on very warm fermentation temperatures for ''Brettanomyces''. Milk The Funk Facebook group. 04/13/2022.]</ref>. At 20°C (68°F) fermentation rate is about half as slow. ''Brettanomyces'' will still grow at temperatures as low as 15°C (59°F) with about a third of strains being able to grow as low as 10°C (50°F) <ref name="Conterno_2006">[http://www.ajevonline.org/content/57/2/139 Genetic and Physiological Characterization of Brettanomyces bruxellensis Strains Isolated from Wines. Lorenza Conterno, C.M. Lucy Joseph, Torey J. Arvik, Thomas Henick-Kling, Linda F. Bisson. 2006.]</ref><ref>[https://www.ncbi.nlm.nih.gov/pubmed/24290676 Impact of sulfur dioxide and temperature on culturability and viability of Brettanomyces bruxellensis in Wine. Zuehlke JM, Edwards CG. 2013. DOI: 10.4315/0362-028X.JFP-13-243R.]</ref> but growth will be much slower. However, one study showed a slightly higher viability during the full-time period of fermentation at 15°C as opposed to the optimal growth and fermentation temperature range of 20-32°C. The growth rate at 15°C, while still slowly active, varies from strain to strain with some strains growing very poorly. Carbohydrates are consumed much slower, with cellobiose metabolizing ceasing for some strains (although phenol production stayed the same between 15°C and 22.5°C) <ref name="Tyrawa_2017" />. At a temperature of 35°C (95°F), fermentation is greatly inhibited due to cell death for most strains of ''B. bruxellensis'', with about a third of strains able to grow as high as 37°C (98.6°F) <ref name="Conterno_2006" />, and complete elimination in wines at 50°C for 5 minutes (see also [[Barrel#Sanitizing|Barrel Sanitizing]] and [[Quality_Assurance#Pasteurization|Pasteurization]]) <ref name="Couto_2005">[https://pubmed.ncbi.nlm.nih.gov/15996781/ Thermal inactivation of the wine spoilage yeasts Dekkera/Brettanomyces. José António Couto, Filipe Neves, Francisco Campos, Tim Hogg. 2005. DOI: 10.1016/j.ijfoodmicro.2005.03.014.]</ref><ref name="Nunes de Lima 2020">[https://www.sciencedirect.com/science/article/abs/pii/S0740002020302069 Survival and metabolism of hydroxycinnamic acids by Dekkera bruxellensis in monovarietal wines. Adriana Nunes de Lima, Rui Magalhães, Francisco Manuel Campos, José António Couto. 2020. DOI: https://doi.org/10.1016/j.fm.2020.103617.]</ref>. ''B. naardenensis'' is less tolerant to extreme temperatures, and it has been demonstrated that this species cannot grow at 30°C or higher <ref name="Tiukova_2019" />. The primary byproducts of ''Brettanomyces'' fermentation, which are ethanol, acetic acid, and CO2 are produced both during growth but also during fermentation after growth has stopped. At the more optimal fermentation temperatures of 25-32°C, ethanol and acetic acid are produced faster from fermentation, but the amounts of ethanol and acetic acid produced from fermentation are not affected by temperature (i.e. higher temperatures do not produce more ethanol and acetic acid from the same amount of sugar, they are just produced faster at warmer temperatures because fermentation is faster) <ref name="Brandam_2008" />. The warmer temperature ranges that are ideal for ''Brettanomyces'' fermentation rates and growth rates may still produce unfavorable flavors such as higher alcohols; however, this has not been analyzed as far as we know <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1555689637792578/ MTF conversation with Richard Preiss of Escarpment Labs. 01/20/2017.]</ref>. For more information on how fermentation temperature affects the flavor compounds of 100% ''Brettanomyces'' fermentation, see [[100%25_Brettanomyces_Fermentation#Impact_of_Fermentation_Temperature|Impact of Fermentation Temperature]].
The below table is an example of the variety of sugar types that different strains/species of ''Brettanomyces'' banked at the [https://catalogue.ncyc.co.uk National Collection of Yeast Cultures] can ferment under semi-aerobic fermentation and aerobic growth (the '''semi-aerobic''' fermentation value is probably more useful for brewers since oxygen availability is limited during fermentation in normal brewing practices):