Changes

Jump to: navigation, search

Lactic Acid

35 bytes added, 16:10, 20 October 2018
no edit summary
The ability for yeast to bypass glucose repression and ferment multiple types of sugars simultaneously is controlled a by a protein-based genetic [https://en.wikipedia.org/wiki/Prion prion] called '''<nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki>'''. These genetic "prions" are not the same as DNA in genes but are rather misfolded proteins contained in the cytoplasm of the cell. These proteins are dominant over <nowiki>[</nowiki>gar<sup>-</sup><nowiki>]</nowiki>, and are passed to the offspring of the cell during cell division. This type of passing of genetic material from mother cell to daughter cell is much more frequent than genetic mutations and probably exists to help yeast populations quickly adapt to rapidly changing conditions in their environment. Normally in brewers yeast only a small number of cells are <nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki> if any at all. In the brewing environment where there is no competition from other yeasts, brewers yeast benefits from consuming glucose first. In the wild, however, many more strains have been found to be <nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki>. This is thought to be an adaptive advantage for wild yeast depending on the environments in which they live; such yeasts can "hedge their bets" towards consuming other types of sugars, with the side effect of allowing bacteria to produce compounds such as lactic acid that may inhibit competing yeasts <ref name="Jarosz_2014">[http://www.cell.com/cell/abstract/S0092-8674(14)00974-X An Evolutionarily Conserved Prion-like Element Converts Wild Fungi from Metabolic Specialists to Generalists. Daniel F. Jarosz, Alex K. Lancaster, Jessica C.S. Brown, Susan Lindquist. Cell. Volume 158, Issue 5, p1072–1082, 28 August 2014]</ref><ref name="cross-kingdom">[http://weitzlab.seas.harvard.edu/files/weitzlab/files/2014_cell_jarosz.pdf Cross-Kingdom Chemical Communication Drives a Heritable, Mutually Beneficial Prion-Based Transformation of Metabolism. 2014. Daniel F. Jarosz, Jessica C.S. Brown, Gordon A. Walker, Manoshi S. Datta, W. Lloyd Ung, Alex K. Lancaster, Assaf Rotem, Amelia Chang, Gregory A. Newby, David A. Weitz, Linda F. Bisson, and Susan Lindquist. Cell. 2014 Aug 28;158(5):1083-93.]</ref>.
Not only do <nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki> yeast have the ability to ferment other sugars at the same time as glucose, but it has been proposed by some researchers that they produce less alcohol (for example in the referenced study, the <nowiki>[</nowiki>gar<sup>-</sup><nowiki>]</nowiki> ''Saccharomyces'' cells fermented grape must into a 12% ABV wine, and the <nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki> ''Saccharomyces'' cells fermented the same wine must into an 8% ABV wine <ref name="cross-kingdom"/>). Viability over time is also increased in yeast cells that are <nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki> versus those that aren't. In wild fermentation of grapes, the wild <nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki> ''S. cerevisiae'' strains thrived over the other types of fungi that were found on the wild grapes. While the induction of <nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki> can occur in yeast without the presence of lactic acid, the presence of lactic acid greatly increases the occurrence of <nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki> in yeast cells, with higher concentrations of lactic acid producing more occurrences of <nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki> cells. The lactic acid merely has to be present for this to happen, and the yeast's ability to metabolize lactic acid or not does not have an effect. It is thought that this benefits both the <nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki> ''S. cerevisiae'' and the lactic acid bacteria, which are often found together in the wild during fermentation of fruit. The bacteria isn't killed by higher alcohol levels, and the yeast has a broader food source. This effect that lactic acid bacteria have on yeast is known as ''cross kingdom chemical communication'' <ref name="cross-kingdom" /><ref name="Garcia_2016" />. Ramakrishnan et al. (2016) disputed this claim by showing that <nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki> yeast can still ferment sugars adequately, and showed that these yeast were slower at depleting nitrogen and oxygen, thus leaving these resources for the bacteria and creating an environment that stresses the yeast which results in the reported stuck wine fermentations<ref name="Ramakrishnan_2016" />.
In a previous study by Jarosz et al. (2014), it was observed that only certain bacteria species had the effect of inducing <nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki> in some strains of yeast. These bacteria included ''P. damnosus'', ''Lactobacillus kunkeei'', and species from genres ''Staphylococcus'', ''Micrococcus'', ''Bacillus'', ''Listeria'', ''Paenibacillus'', ''Gluconobacter'', ''Sinorhizobium'', ''Escherichia'', ''Serriatia''. In this study, ''L. brevis'', ''L. hilgardii'', ''L. plantarum'' did not appear to induce <nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki> in yeast <ref name="cross-kingdom" />. At the time of this study, it was not understood that lactic acid was an inducer of <nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki>. Additionally, the method they used to discover this was simply to streak bacteria next to yeast on a plate, and see if it grew on a medium that would show whether or not they bypassed glucose repression. Therefore, it is possible that not enough lactic acid was produced, or that they didn't give the bacteria enough time to have an effect on the yeast. More work would need to be done to show that indeed all lactic acid bacteria that produce lactic acid have this effect on yeast, and also it is not clear whether other bacterial metabolites may influence this phenomenon <ref name="preiss">[https://www.facebook.com/groups/MilkTheFunk/permalink/1500240613337481/ Conversation with Richard Preiss on MTF. 12/7/2016.]</ref>. Ramakrishnan et al. (2016) more recently confirmed that the induction of <nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki> is not only species dependent, but strain dependent within species <ref name="Ramakrishnan_2016"/>.
In beer, this might explain other observations as well. For example, Yakobson reported higher attenuation with some strains of ''Brettanomyces bruxellensis'' (WLP650, BSI Drie, CMY001, and WY5526) and one strain of ''B. anomalus'' (WY5151) demonstrated a trend of increased attenuation with increasing concentrations of lactic acid <ref>[http://brettanomycesproject.com/dissertation/pure-culture-fermentation/impact-of-initial-concentration-of-lactic-acid/ "The Brettanomyces Project". Chad Yakobson. 2011. Retrieved 12/7/2016.]</ref>. In mixed fermentations of beers such as lambic and American sour ales, attenuation is often slower, but typically eventually reaches a high degree of attenuation. Some strains of ''S. cerevisiae'' are more tolerant of acidic conditions than others. Although this might answer some questions, mixed fermentation is a complex thing with many other variables and more work needs to be done to identify whether all or just some strains of yeast/bacteria have the effect of inducing <nowiki>[</nowiki>GAR<sup>+</sup><nowiki>]</nowiki>, and how that might affect the fermentation profile of various types of beers <ref name="preiss"/>.

Navigation menu