13,700
edits
Changes
no edit summary
====Efficacy of Cleaning Agents====
Sodium hydroxide (caustic), [https://en.wikipedia.org/wiki/Ethylenediaminetetraacetic_acid EDTA (ethylene diaminetetra-acetic acid)], chlorinated disinfectants, and hydrogen peroxide-based disinfectants such as Pur-Ox from Birko or Lerasept-O from Loeffler are effective at breaking up biofilms when used in their highest recommended concentrations <ref name="Wirtanen_2001" /><ref>Brandon Jones. Private correspondence with Dan Pixley. 04/02/2018.</ref><ref>[https://www.reddit.com/r/TheBrewery/comments/6hqnvf/mtkettle_cleaning/dj0zd0s/ Levader on Reddit.com. "The Brewery". Retrieved 04/02/2018.]</ref>. Foaming agents that are often used in packaging lines for cleaning, however, might not be as effective. One study found that one foaming agent (VK10 Shureclean, which is sodium alkylbenzenesulphonate) required two times the maximum concentration that is recommended by the manufacturer to completely remove biofilms. In comparison, all of the sodium hydroxide (caustic) based cleaners that were tested were effective at completely removing biofilms in concentrations that were below the vendors' recommended maximum concentrations <ref>[https://link.springer.com/article/10.1007/s13213-010-0085-5#Bib1 Susceptibility of wine spoilage yeasts and bacteria in the planktonic state and in biofilms to disinfectants. Mariana Tristezza, António Lourenço, André Barata, Luísa Brito, Manuel Malfeito-Ferreira, Virgílio Loureiro. 2010.]</ref>. Peracetic acid (PAA) has also been shown to be effective against biofilms in the highest recommended concentrations but isn't as effective as the previously mentioned cleaners and should be used after a caustic cleaning cycle <ref>[https://www.researchgate.net/publication/273439407_Disinfectant_testing_against_brewery-related_biofilms Disinfectant testing against brewery-related biofilms. Storgårds, Erna & Närhi, Mikko & Wirtanen, Gun. 2001.]</ref><ref>[https://www.researchgate.net/publication/244994186_COMMERCIAL_SANITIZERS_EFFICACY_-_A_WINERY_TRIAL COMMERCIAL SANITIZERS EFFICACY – A WINERY TRIAL. Duarte, Filomena & López, Alberto & Alemão, Filomena & Santos, Rodrigo & Canas, Sara. 2011.]</ref>, but its effectiveness decreases below 20°C. Chlorine and iodine-based disinfectants destroy microbe at colder temperatures, however, they are less effective in the presence of wort or other residues. Chlorine-based disinfectants can cause pitting in stainless steel if left in contact for too long, and [https://ssbrewtech.zendesk.com/hc/en-us/articles/205602399-DO-NOT-USE-BLEACH-OR-CHLORINATED-CHEMICALS- some stainless steel manufacturers] recommend not using chlorine-based disinfectants at all (refer to your equipment and chemical manufacturers). Hot water is one of the most effective disinfectants, however, dry heat is not effective at killing bacteria (one strain of ''L. brevis'' was able to withstand 80°C dry heat for 60 minutes) <ref name="Wirtanen_2001" />.
==Quality Control==