13,691
edits
Changes
no edit summary
Although spontaneous ales have a common pattern of fermentation by groups of genera of microbes, the diversity in specific species is large across different lambic producers and American spontaneous ale producers (although data for American spontaneous ale producers is limited). In American spontaneous ale producers, ''Klebsiella'' spp., ''Enterobacter'' spp.,'' Pectobacterium carotovorum'', and ''Serratia ureilytica'' have been found. In Belgian lambic producers, ''Enterobacter'' spp., such as ''Enterobacter aerogenes'', ''Enterobacter cloacae'', ''Enterobacter hormaechei'' and ''Enterobacter kobei'', ''Klebsiella aerogenes'', ''Klebsiella oxytoca'', ''Klebsiella varicola'', ''Escherichia coli'', ''Hafnia alvei'', ''Hafnia paralvei'', and ''Citrobacter freundii'', have been found in lambic, with ''E. cloacae'' and ''K. aerogenes'' as the most frequently found ones. Although these enterobacteria contribute little in terms of gravity drop over the first month of fermentation (they mostly consume sucrose in the wort), they do contribute aroma and flavor compounds and precursors during the initial stages of spontaneous fermentation, particularly acetoin, 2,3 butanediol, acetic acid, lactic acid, succinic acid, DMS, acetaldehyde, long-chain fatty acids (these play a role in both flavor impact and providing nutrients for yeast later in the fermentation process), and small amounts of glycerol, ethyl acetate, and higher alcohols which might form esters in the later stages of fermentation. Enterobacteria can also contribute to the production of [https://en.wikipedia.org/wiki/Biogenic_amine biogenic amines] in fermented foods and beverages, including spontaneously fermented beers. Enterobacteria usually disappear after 30-40 days of fermentation due to the increase in ethanol, decrease in pH, and a decrease in food availability <ref name="Martens et al., 1992" /><ref name="Roos_2018">[https://www.ncbi.nlm.nih.gov/pubmed/30246252?dopt=Abstract Microbial acidification, alcoholization, and aroma production during spontaneous lambic beer production. Jonas De Roos and Luc De Vuyst. 2018. DOI: 10.1002/jsfa.9291.]</ref>, although one study by Curtin et al. reported finding at least small populations of enterobacteria as late as up to 4.5 months <ref name="curtain_asbc_2018">[https://www.asbcnet.org/lab/webinars/webinars/Pages/funkyFermentationsWebinar.aspx Chris Curtin. ASBC webinar: "Funky Fermentations". 12/12/2018. Retrieved 01/03/2019.]</ref>(~25 minutes in), as well as a significant population of ''Komagataeibacter'', a genera normally found in kombucha, after 135 day <ref name="Curtin_2021">[https://www.tandfonline.com/doi/abs/10.1080/03610470.2020.1795607?journalCode=ujbc20 Avi Shayevitz, Keisha Harrison & Chris D. Curtin (2021) Barrel-Induced Variation in the Microbiome and Mycobiome of Aged Sour Ale and Imperial Porter Beer, Journal of the American Society of Brewing Chemists, 79:1, 33-40, DOI: 10.1080/03610470.2020.1795607.]</ref>.
Acetic acid bacteria (AAB) are also present during the first stage of fermentation before alcoholic fermentation begins. These consist of a large diversity of species from ''Acetobacter'' and ''Gluconobacter'', with different species thriving more than others at different points during the long fermentation of lambic and some species found being different in different casks <ref name="De_roos_AAB_2018">[https://journals.asm.org/doi/10.1128/AEM.02846-17 Temporal and Spatial Distribution of the Acetic Acid Bacterium Communities throughout the Wooden Casks Used for the Fermentation and Maturation of Lambic Beer Underlines Their Functional Role. ASM Journals. Applied and Environmental Microbiology. Vol. 84, No. 7. DOI: https://doi.org/10.1128/AEM.02846-17.]</ref>, including two species that were first described by studies researching lambic (''Acetobacter lambici'' and ''Gluconbacter cerevisiae'' sp. nov. <ref>[https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.057315-0 Acetobacter lambici sp. nov., isolated from fermenting lambic beer. Spitaels, Freek and Li, Leilei and Wieme, Anneleen and Balzarini, Tom and Cleenwerck, Ilse and Van Landschoot, Anita and De Vuyst, Luc and Vandamme, Peter. International Journal of Systematic and Evolutionary Microbiology. 2014. https://doi.org/10.1099/ijs.0.057315-0.]</ref><ref>[https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.059311-0 Gluconobacter cerevisiae sp. nov., isolated from the brewery environment Free. Spitaels, Freek and Wieme, Anneleen and Balzarini, Tom and Cleenwerck, Ilse and Van Landschoot, Anita and De Vuyst, Luc and Vandamme, Peter. International Journal of Systematic and Evolutionary Microbiology. 2014. https://doi.org/10.1099/ijs.0.059311-0.]</ref>, as well as ''Acetobacter cerevisiae'' and ''Acetobacter faborum'' <ref name="Roosa_2024">De Roos, J., Vermotea, L., Cnockaertb, M., Vandammeb, P., Weckxa, S., & De Vuysta, L. WOODEN BARRELS HELP TO STEER THE LAMBIC BEER FERMENTATION AND MATURATION PROCESS.</ref>). Acetic acid bacteria are able to grow for the first few weeks because oxygen is available from filling the casks. Once alcoholic fermentation begins, oxygen becomes limited, and the acetic acid bacteria population greatly decreases. Acetic acid bacteria appear again after the alcoholic fermentation phase <ref name="Bongaerts_2021" /><ref name="Roosa_2024" />. For example, Curtin et al. (2018) reported that acetic acid bacteria came and went at various random points within a 0-4.5 month period of fermentation <ref name="curtain_asbc_2018" />(~26 minutes in). De Ross et al. (2018) reported finding small amounts of acetic acid bacteria in lambic during the first few days of fermentation, which then disappeared once alcoholic fermentation began. AAB then reappeared in the casks in greater numbers at week 7 of fermentation, and continued to be isolated in gradually decreasing cell counts for 24 months, the end of which AAB was no longer isolated <ref name="De_roos_AAB_2018" />.
Acidifying the wort to a pH below 4.5 before cooling and exposing to ambient microbes in a coolship can partially eliminate the enterobacteria phase of spontaneous fermentation and thus avoid or limit biogenic amine production, which is a common practice for some lambic breweries <ref name="Spitaels et al., 2015" /><ref name="Roos_2018_2" />. While enterobacteria and oxidative yeasts are not considered to be a part of the core microbes in spontaneous fermentation, it has been shown that ''Saccharomyces cerevisiae'' is metabolically stimulated when co-fermented with some of these species, allowing the ''S. cerevisiae'' to consume more glucose and nitrogen and to more quickly replicate <ref name="Roos_2018" />. De Roos et al (2018) reported significant populations of the enterobacteria species ''Klebseilla variicola'', ''Klebsiella oxytoca'', and the yeast species ''Hanseniaspora uvarum'', ''Saccharomyces cerevisiae'' during the first week or two of lambic fermentation that was pre-acidified (see [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6252343/figure/F3/?report=objectonly Figure 3]). Landschoot et al (2015) sampled lambic wort that was pre-acidified to a pH of 4 after being housed in a coolship overnight and during the early weeks of fermentation and found no ''Enterobacteriaceae'' in the samples <ref name="Landschoot_2015">[https://www.academia.edu/22769494/The_microbial_diversity_of_an_industrially_produced_lambic_beer_shares_members_of_a_traditionally_produced_one_and_reveals_a_core_microbiota_for_lambic_beer_fermentation?email_work_card=view-paper Spitaels, F., Wieme, A. D., Janssens, M., Aerts, M., Landschoot, A. V., Vuyst, L. D., & Vandamme, P. (2015). The microbial diversity of an industrially produced lambic beer shares members of a traditionally produced one and reveals a core microbiota for lambic beer fermentation. Food Microbiology, 49, 23–32. https://doi.org/10.1016/J.FM.2015.01.008.]</ref>. Oxidative yeasts are also present during the first stage of fermentation, including species of ''Rhodotorula'', ''Candida'', ''Cryptococcus'', ''Hanseniaspora'', and ''Pichia'', some of which might survive pre-acidification <ref name="Bokulic et al., 2012" />. Zach Taggart reported that in a spontaneously fermented beer at his commercial brewery this initial stage also corresponded with a pH drop from 5.0 to 4.5 in 6 days and the aroma went from sweet-smelling wort to phenolic and a light burnt rubber character during this time in one batch of spontaneous fermentation <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/2360399550654912/ Zach Taggart (using his wife's Facebook account). Milk The Funk Facebook group post on analysis of spontaneous fermentation at 42 North Brewing Co. 11/09/2018.]</ref>.
====Second Stage: Ethanol Production====
The second stage of spontaneous fermentation is dominated by ''Saccharomyces'' species (predominantly ''S. cerevisiae'', ''S. bayanus'', ''S. kudriavzevii'', and ''S. pastorianus'', the latter two species often being present towards the end of this phase in lambic due to the colder cellar temperatures during the winter season when lambic is made). ''Hanseniaspora uvarum'' has also been reported in some but not all lambic fermentations playing a major role in starting the second stage of spontaneous fermentation, which is characterized by ethanol production<ref name="Roosa_2024"/><ref name="Bongaerts_2021" />. Most of the attenuation is accomplished during this stage with the depletion of monosaccharides, disaccharides, and trisaccharides consumed in that order (glucose/fructose is consumed first by the ''Saccharomyces'' species, and then maltose/maltotriose are gradually depleted until they are gone by the end of the second stage). ''S. kudriavzevii'' is capable of breaking down maltooligosaccharides (dextrins) through alpha-glucosidase enzyme production, and therefore can out-compete ''S. cerevisiae'' in the later portion of the second stage <ref name="Bongaerts_2021" />.
Ethanol, methyl-1-butanol, and succinic acid are the main compounds produced during this stage for wort that has been pre-acidified. This stage lasts approximately 3-4 months. One study also found populations of ''Kazachsania'' yeast species and ''Cellulosimicrobium'' yeast species early on in the second stage <ref name="Roos_2018_2" /><ref name="Bongaerts_2021" />. In addition to the bulk of the overall ethanol production, this phase also sees the production of higher alcohols and the synthesis of esters, especially isoamyl acetate, as well as glycerol, caprylic acid, and capric acid <ref name="Van Oevelen et al., 1977" /><ref name="Roos_2018" />. It has been reported by some brewers that this stage might begin as early as 3-14 days and corresponds with a drop in pH below that of regular beer, indicating that the first stage for some spontaneous fermentations might be shorter and faster than reported in the other literature <ref>[http://www.spontanmanc.co.uk/?p=66 Zach Taylor of Chorlton Brewing Co. "The Lab Work Begins". Spontanmanc blog. 08/01/2018. Retrieved 08/29/2018.]</ref>. MTF members (both homebrewers and professionals) have observed yeast fermentation activity typically at 3-7 days <ref>[https://www.facebook.com/events/666424196868756/ Various MTF members. Milk the Funk - Collaboration Brew #3: Spontaneous. 05/01/2017. Retrieved 08/29/2018.]</ref><ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1571139996247542/?comment_id=1571597289535146 Raf Soef, James Howat, Levi Funk. Milk The Funk Facebook thread on how long it takes for yeast to start fermenting in a spontaneous fermentation. 2017.]</ref>. However, these reports are anecdotal based on visual fermentation and microbe analysis was not done in many cases. De Roos et al. (2018) reported that for wort that is pre-acidified to a pH of 4.5, and after an initial drop in pH to 3.8 by enterobacterial and acetic acid bacteria, the pH rose to 4.0 during the secondary fermentation phase, indicating that the yeast consumed some of the organic acids that were produced during the initial enterobacteria phase <ref name="Roos_2018_2" />.
====Third Stage: Acidification====
The ''[[Saccharomyces]]'' dominated stage of fermentation is followed by prolonged and gradual acid and flavor development accompanied by the final points of attenuation, which lasts anywhere from 2 to 10 months <ref name="Roos_2018" />. This stage is dominated by lactic acid bacteria (LAB), primarily ''[[Pediococcus]]'' and sometimes ''[[Lactobacillus]]''. Several organic acids are produced during this stage with the majority of them being lactic acid and acetic acid, resulting in the pH of the beer dropping to below 3.5 <ref name="Van Oevelen et al., 1977" /><ref name="Bongaerts_2021" /><ref name="Roosa_2024" />. Other sources describe the acidification and maturation phases as one extended maturation phase with acidification from ''Pediococcus'' and ''Brettanomyces'' growth occurring simultaneously <ref name="Spitaels et al., 2015" /><ref name="Bokulic et al., 2012" /><ref name="Spitaels et al., 2014" />. When the wort is pre-acidified, the acidification and maturation phases overlap <ref name="Roos_2018" />. Other yeasts such as ''Candida'', ''Cryptococcus'', and ''Torulopsis'' species have also been isolated from mature lambic, although their impact other than possibly being involved in the formation of a pellicle is unknown <ref>[https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2050-0416.1977.tb03825.x MICROBIOLOGICAL ASPECTS OF SPONTANEOUS WORT FERMENTATION IN THE PRODUCTION OF LAMBIC AND GUEUZE. D. Van Oevelen M. Spaepen P. Timmermans H. Verachtert. 1977. DOI: https://doi.org/10.1002/j.2050-0416.1977.tb03825.x.]</ref>. As many of the flavor and aroma characteristics that we associate with spontaneously fermented beer are produced during this slow maturation/acidification phase, allowing sufficient aging time is important when producing spontaneously fermented beers <ref name="Van Oevelen et al., 1976" /><ref name="Spaepen et al., 1978" />. Specifically, the ratio of lactic acid to acetic acid greatly impacts the flavor profile of the beer. Lactic acid can range from 1.5 to 10 g/l, where as acetic acid is hopefully limited to 1.5 g/l due to he more harsh acidic flavor of acetic acid <ref name="Bongaerts_2021" />. Homebrewer Caleb Buck reported data on several batches of homebrewed spontaneously fermented beer and observed a slower drop in gravity for some batches than others over about a 7 month period (see [http://www.archaicpursuit.com/2018/08/2017-coolship-experiment-hopping-rate.html?m=1 this graph for details]). De Roos et al. (2018) reported a gradual increase in glucose, maltose, and maltotriose from week 7 to month 6 due to the degradation of maltooligosaccharides (higher chain sugars) <ref name="Roos_2018_2" />.
The acidification phase is also accompanied by the growth of acetic acid bacteria (AAB), which can be undesirable if this growth is excessive since it leads to greater [[Acetic Acid|acetic acid]] production (in high quantities, acetic acid smells and tastes like vinegar and is very harsh on the palate and throat) as well as acetoin. These microbes include species from the genera of ''Acetobacter'' and ''Gluconobacter''. The species diversity of these genre is lower than during the primary stage due to acid and ethanol selecting for species that are more tolerant to these harsher conditions. For example, De Roos et al. (2018) reported high numbers of ''Acetobacter pasteurianus'', which contains extra genes that code for acid and ethanol tolerance more so than other species of ''Acetobacter'', in lambic from month 3 to month 6, with it disappearing around month 9-13 as ''Pediococcus damnosus'' took its place. ''Acetobacter lambici'' is another species found in lambic during this stage and is well adapted to the lambic environment due to its ability to break down maltooligosaccharides (dextrins) via maltooligosyl trehalose synthase. These microbes are dependent on oxygen in order to metabolize ethanol into acetic acid (with acetaldehyde produced as an intermediary step) and acetoin from lactic acid and are found on the surface of the wort where oxygen is available. The beer/air interface (or surface of the beer that interfaces with the air above it) is also where higher concentrations of acetic acid, ethyl acetate, and acetoin are found due to the AAB being present there rather than deeper within the beer (this is similar to [[Flanders Red Ale]]) <ref name="Roos_2018_2" /><ref name="Roos_2018" /><ref name="Bongaerts_2021" />. With the flavor threshold of acetic acid in beer being 90 ppm <ref>[https://www.aroxa.com/beer/beer-flavour-standard/acetic-acid Aroxa website. "Acetic Acid". Retrieved 11/19/2018.]</ref>, and the levels of acetic acid in Belgian gueuze/lambic being reported in the range of 727-2240 ppm, acetic acid levels in this range is an important flavor compound in spontaneously fermented beers <ref>[http://beachwoodbbq.com/pdf/BBAIBLTBLENDERY.pdf Ryan Fields. "Brewing Beer in America Inspired By the Belgian Lambic Tradition". 2018.]</ref><ref name="Spitaels et al., 2015" />. During a second phase of growth of acetic acid bacteria starting at week 7 in lambic casks, significantly more acetoin (moldy/must flavor when above 50 ppm <ref>[https://www.morebeer.com/articles/Fatty_Flavors_Diacetyl "Fatty Flavors and Diacetyl - Should Your Beer Be Fat-Free?". MoreBeer website. Scott Bickham. Retrieved 04/04/2023.]</ref>) was found in the top portion of the lambic casks above flavor threshold. Acetic acid bacteria has been shown to reduce lactic acid into acetoin, and in another study by De Roose et. al (2023) the researchers found that ''Acetobacter lambici'' present in lambic samples that were tested had the genetic capability to utilize lactic acid as a food source <ref name="Roosa_2024"/>. Acetoin was gradually reduced (presumably metabolized by ''Brettanomyces'') below flavor thresholds at month 9 until it reached near 0 ppm around month 18 <ref name="De_roos_AAB_2018" />.
====Fourth Stage: Maturation====
The fourth and last phase of spontaneous fermentation, also known as the extended maturation phase, is dominated by ''Brettanomyces'' yeast, which is a genus of yeasts that are highly tolerant of low pH, high alcohol, and can survive in low-nutrient conditions (see ''[[Brettanomyces]]'' for more information), as well as lactic acid bacteria from the genera ''[[Pediococcus]]'' and to a lesser extent ''[[Lactobacillus]]'' and certain other yeast species. The most abundant species of ''Brettanomyces'' found in spontaneously fermented beer are strains of ''B. bruxellensis'' (''B. lambicus'' is often found, but has been reclassified as a strain of ''B. bruxellensis''). ''B. bruxellensis'' was first isolated from English stock ales in 1904 and then first isolated from lambic in 1921 by Belgian researchers Kufferath and Van Laer. ''B. anomalus'' and ''B. custersianus'' have also been found, but to a lesser extent than ''B. bruxellensis''. ''Pichia membranifaciens'', ''Debaryomyces hansenii'', and ''Wickerhamomyces anomalus'' are examples of other yeast species that have been found to a lesser extent in lambic during the maturation phase <ref name="Van Oevelen et al., 1977" /><ref name="Roos_2018" /><ref name="Roos_2018_2" /><ref name="Bongaerts_2021" /><ref name="Roosa_2024" />. In some but not all lambic, a shift from ''B. bruxellensis'' to ''B. custersianus'' can occur during the end of maturation, which seems to occur in more porous barrels that have more oxygen ingress and correlates with its preference for a more aerobic environment <ref name="Bongaerts_2021" />.
This phase generally begins somewhere around month four to eight, with these microbes completely dominating at around 9-13 months <ref name="Roos_2018_2" /><ref name="curtain_asbc_2018" />(~26 minutes in). Additional attenuation occurs very slowly for another 7-18 months. De Roos et al. (2018) reported a gradual drop from 4 Plato to 0.5 °Plato during the maturation phase. <ref name="Roos_2018_2" />. During this extended maturation phase, ''Brettanomyces'' continues to ferment the residual sugars leftover in the beer using intra- and extracellular alpha-glucosidase, and produces most of the final aromatic and flavor compounds in the form of esters, phenols, and fatty acids found in finished Belgian lambic and other spontaneously fermented beers (see [[Brettanomyces#Brettanomyces_Metabolism|''Brettanomyces'' metabolism]]). During the maturation phase, a [[pellicle]] is formed from the ''Brettanomyces'', as well as oxidative yeasts from the genera ''Pichia'', ''Candida'', ''Cryptococcus'', and ''Torulspsis'' <ref name="Van Oevelen et al., 1977" /><ref name="Roos_2018" /><ref name="Roos_2018_2" /><ref name="Bongaerts_2021" />. It is thought that the pellicle and the presence of these oxidative yeasts might reduce oxygen influx, and thus assist in inhibiting the growth of acetic acid bacteria <ref>[https://pdfs.semanticscholar.org/8c12/9985b9f1264179fe2e2f779bae1ff3e51a54.pdf Jacques De Keersmaecker. "The Mystery of Lambic Beer". Scientific American, Inc. 1996.]</ref>, however, this has not been proven in a scientific manner that we know of.
Loret et al (2005) examined the levels of biogenic amines in Belgian beers, including lagers, traditional ales, bottle conditioned ales, and spontaneously fermented beer (presumably lambic). They found that spontaneously fermented beers, which were 42 samples out of the total 297 samples and from 10 different breweries, generally contained the most biogenic amines, namely tyramine (associated with hypertension), histamine (associated with hypotension), and cadaverine. However, not all of these breweries produced higher levels of amines, suggesting that processing in some breweries is limiting the biogenic amine production (this process was not identified in the Loret et al study, but the process is likely to be the lowering of the wort pH to 4.5 to limit the enterobacteria phase). For example, 6 of the spontaneous fermentation breweries had levels of histamine as an average between 20-45 mg/l, and levels of tyamine between 30-60 mg/l, which is higher than the upper limit that is generally considered to be safe for consumers (this upper limit was stated as 10 mg/l by Loret et al.). The other 4 breweries had levels of histamine and tyramine between 0-20 mg/L, as an average. Interestingly, they also found that a small number of ales and bottle conditioned ales, 21 out of 220 samples, also had levels of tyamine above the upper limit of 10 mg/l. None of the lagers sampled had biogenic amines above 10 mg/l <ref name="loret_2005" />. Another study in Portugal measured biogenic amines in 5 Portuguese craft beers (4 ales and 1 lager; no mixed fermentation or sour beers) and reported that the total biogenic amine content was less than 10 mg/l for all of the beers <ref>[https://www.mdpi.com/1424-8220/23/1/343 Gil, R.L.; Amorim, C.M.P.G.; Amorim, H.G.; Montenegro, M.d.C.B.S.M.; Araújo, A.N. Influence of Brewing Process on the Profile of Biogenic Amines in Craft Beers. Sensors 2023, 23, 343. https://doi.org/10.3390/s23010343.]</ref>.
De Roos et al. (2018) measured biogenic amines over the fermentation lifespan of Belgian lambic beers that were pre-acidified to a pH of 4.5 before being cooled in a coolship and spontaneously fermented. They found that the initial wort had low concentrations of some biogenic amines, such as agmatine (9 mg/l), putrescine (8 mg/l), and cadaverine (3 mg/l). In one cask, the agmatine remained stable while in the second cask the agmatine declined to zero during the maturation phase, and then slightly increased to less than 5 mg/l. Cadaverine was produced during the first three weeks of fermentation and remained steady throughout the fermentation process at about 30 mg/l. Histamine was produced during the acidification phase by ''Pediococcus damnosus'' between 3 and 9 months and ended up at around 15 mg/l. Tyramine had final concentrations of around 30-40 mg/l and was formed either during the acidification phase (6 months) or the late maturation phase (18-24 months), potentially by ''P. damnosus'' or some other LAB that was at too low of a population to detect, or maybe as a result of autolysis of dead yeast cells. 2-Phenylethylamine and tryptamine were never found in the lambic beers <ref name="Roos_2018_2" />. A second study by the same group of researchers in 2024 confirmed that ''P. damnosus'' was responsible for producing histamine in lambic samples that were tested at one brewery; the total biogenic amines remained below the regulatory levels deemed safe for consumption in Europe <ref name="Roosa_2024" />.
The biogenic amines content of spontaneously fermented beer that is not acidified before fermentation is not likely to be high enough to cause serious physical harm. Large amounts of beer must be consumed before advisable limits are reached. However, the additive effect of different amines consumed with a large amount of beer might cause health related reactions in some people. See [http://suigenerisbrewing.com/index.php/2019/01/22/biogenic-amines/ "Fact or Fiction – Biogenic Amines in Beer" by Dr. Bryan Heit; an analysis of biogenic amines in spontaneously fermented beer and associated health concerns] for more information.
** [https://www.facebook.com/groups/MilkTheFunk/permalink/2570617069633158/?comment_id=2570641549630710&reply_comment_id=2570664762961722&comment_tracking=%7B%22tn%22%3A%22R8%22%7D Follow up from Dr. Heit on MTF on "allergic-like" reactions to biogenic amines.]
* [http://suigenerisbrewing.com/index.php/2020/07/07/nitrosamines-fact-or-fiction "Fact or Fiction Part VI – Nitrosamines in Beer," by Dr. Bryan Heit.]
* [https://www.youtube.com/watch?v=GZoHGWuMeEk "The surprising truth about histamine intolerance - Dr. Will Bulsiewicz," ZOE Podcast.]
===Source of Microbes===
Landschoot et al. (2015) attempted to recover yeasts and bacteria sampled from the brewery walls, ceilings, and coolship in an industrial brewery in West-Flanders that also produces lambic. They were unable to recover any yeasts or bacteria from these surfaces. The team did recover several species of microbes from the air of the coolship room such as ''Klebsiella oxytoca'', ''Bacillus'', and ''Staphylococcus'', but these microbes were not found in the wort after cooling in the coolship nor in the foeders during the sample times of 1, 2 and 3 weeks. ''S. cerevisiae'', ''S. pastorianus'', ''D. bruxellensis'', ''P. damnosus'', and a diverse range of acetic acid bacteria were the dominate species of microbes found during the fermentation of lambic in this brewery. After boiling, the brewery cooled its wort to 40°C using an industrial heat exchanger before pumping it into the coolship to reside overnight for 24 hours. The foeders in this brewery are cleaned with a pressure washer and are no attempt was made to pasteurize or sanitize the foeders with heat or chemicals. The inside surfaces of the foeders were sampled and these samples were the only samples that contained microbe species that were found during the fermentation of the lambic. The authors concluded that the microbes fermenting lambic at this brewery are introduced into the wort via the wooden inner surfaces of the foeders <ref name="Landschoot_2015"/>.
De Roos et al. (2024) reported finding a very diverse set of species in wort sampled from coolships after cooling (100-200 mL samples). Using DNA sequencing techniques and in order of abundance, they found ''H. uvarum'', ''S. cerevisiae'', ''Penicillium roqueforti'', ''Acinetobacter guillouiae'', ''Lactococcus raffinolactis'', ''Geotrichum candidum'', ''Chryseobacterium bovis'', ''Flavobacterium hibernum'', ''Yarrowia lipolytica'', and ''Trichococcus flocculiformis''. However, the only species from the coolship samples that were found during fermentation in two Italian wine barrels were ''H. uvarum'' and ''S. cerevisiae''. The authors concluded that the wooden casks themselves, despite heavy cleaning methods, contributed the majority of impactful microbe species during fermentation and aging, including ''Brettanomyces'' <ref name="Roosa_2024"/>. The authors of the study write (see also [https://www.facebook.com/groups/MilkTheFunk/posts/7935877029773775/ comments by Dr. Bryan Heit this MTF post]):
<blockquote>
''The present study further contributed to the role of wooden barrels in the spontaneous inoculation of the fermenting wort and maturing beer during lambic beer production. Although shotgun metagenomics revealed that the cooled wort had the highest diversity and evenness, its harboring species did not contribute to the wort fermentation and beer maturation in the casks.'' <ref name="Roosa_2024"/>
</blockquote>
Various brewer anecdotes from experiments appear to contradict the published scientific literature. James Howat of Black Project Spontaneous Ales reported conducting an experiment that showed a similar fermentation profile between a barrel fermented spontaneous beer and samples taken from the coolship and aged in glass flasks <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1977772602250944/?comment_id=1977929225568615&reply_comment_id=1978520655509472&comment_tracking=%7B%22tn%22%3A%22R%22%7D James Howat. Milk The Funk thread on the source of ''Brettanomyces'' in lambic. 02/05/2018.]</ref>. The spontaneous beers at Black Project were produced for a few years by placing a kettle on the roof outside of the brewery to collect microbes from the air and then racked directly to barrels, so there was no influence of microbes living within the brewery (Black Project now uses a coolship inside the brewery). This led James to conduct this experiment to see how much the barrels were influencing the microbiome of the beers even after they were steamed to the [[Barrel#Sanitizing|point of possible pasteurization]]. James reported that the sensory characteristics between the barrel aged beers and the flask-aged beers were very similar, other than the obvious differences that the oak would have provided, which led him to believe that air inoculation provides a significant contribution to the microbial load of spontaneously fermented beers. Additionally, Brasserie-Brouwerij Cantillon (ref needed) and Oud Beersel <ref>[https://soundcloud.com/craftbeerbrew/podcast-episode-21-new-belgiums-wood-cellar-director-blender-lauren-limbach Lauren Limbach. Craft Beer and Brewing Magazine Podcast. Episode 21. 02/16/2018.]</ref> (~42 minutes in) are known to steam clean their barrels which might be enough to [[Barrel#Sanitizing|sanitize them]], although former Cantillon brewer and saison expert Yvan De Beats maintains that Cantillon barrels are not heated enough to be pasteurized <ref>[https://www.crowdcast.io/e/saison-ale-myths-yvan-baets/1 De Beats, Ybsn. Doug pipers Crowdcast. 08/26/2021.]</ref>. Pierre Tilquin reported that different worts brewed and cooled by different lambic brewers present different fermentation and flavor profiles when barrel fermented in his blendery, particularly when he began steam cleaning emptied barrels <ref>[https://beerandbrewing.com/podcast-episode-234-pierre-tilquin-of-gueuzerie-tilquin-makes-lambic-and/ Pierre Tilquin. Interview on Craft Beer & Brewing Podcast. Episode 234. 04/15/2022.]</ref>(~15 and ~27 mins in). Mitch Ermatinger of Speciation Artisan Ales reported moving wort cooled overnight in a coolship to a stainless fermenter, and the wort began showing signs of visual fermentation four days later <ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/3012223975472463/?comment_id=3012239425470918&reply_comment_id=3012428892118638 Mitch Ermatinger. Milk The Funk Facebook thread on sources for microbes in spontaneous fermentation. 10/28/2019.]</ref>. Such anecdotes deserve further investigation using the full scientific process.