13,703
edits
Changes
→Environment and Survival
===Environment and Survival===
''Brettanomyces'' has been thought to occur naturally on the skins of fruit such as apples and grapes. However, there are only a handful of reports of ''Brettanomyces'' being identified on the skins of fruit, and in some cases where ''Brettanomyces'' has been found, its abundance is extremely minimal <ref>[https://onlinelibrary.wiley.com/doi/full/10.1002/jib.154 Lentz, M., Putzke, T., Hessler, R. and Luman, E. (2014), Genetic and physiological characterization of yeast isolated from ripe fruit and analysis of fermentation and brewing potential, J. Inst. Brew., 120: 559– 564. DOI: 10.1002/jib.154.]</ref><ref name="Comitini">[https://www.frontiersin.org/articles/10.3389/fmicb.2019.00415/abstract Occurrence of Brettanomyces bruxellensis on grape berries and in related winemaking cellar. Francesca Comitini, Lucia Oro, Laura Canonico, Valentina Marinelli, Maurizio Ciani. 2019. DOI: 10.3389/fmicb.2019.00415.]</ref><ref name="Renouf_2007">[https://www.sciencedirect.com/science/article/pii/S0944501306000231?via%3Dihub Development of an enrichment medium to detect Dekkera/Brettanomyces bruxellensis, a spoilage wine yeast, on the surface of grape berries. Vincent Renouf, Aline Lonvaud-Funel. 2007. DOI: https://doi.org/10.1016/j.micres.2006.02.006.]</ref>. In contrast, there are also studies that indicate ''Brettanomyces'' only being found during or after food processing, which indicates that the processing equipment may be the primary source for the ''Brettanomyces''. Although it is generally thought that ''Brettanomyces'' originates from the skins of fruit, in general, there is also a lack of direct evidence that ''Brettanomyces'' occurs in abundance naturally on fruit skins. In addition, ''Brettanomyces'' has been isolated in abundance from the surfaces of equipment /food/waste in wineries and breweries <ref name="smith_divol_2016" /><ref name="Schifferdecker" /><ref name="Loureiro_2003">[https://www.ncbi.nlm.nih.gov/pubmed/12892920 Spoilage yeasts in the wine industry. Loureiro V, Malfeito-Ferreira M. 2003.]</ref><ref name="Steensels" /><ref name="Barata_2008">[https://www.ncbi.nlm.nih.gov/pubmed/18077036 Survival patterns of Dekkera bruxellensis in wines and inhibitory effect of sulphur dioxide. f Barata A, Caldeira J, Botelheiro R, Pagliara D, Malfeito-Ferreira M, Loureiro V. 2008.]</ref> (Table 1). For example, an ongoing survey of wild yeasts in most of the US which isolated nearly 2,000 isolates with 262 unique species has not yet found a single occurrence of ''Brettanomyces'' in the wild (so far they have only surveyed non-human inhabited wild areas of the US and Alaska; substrates sampled included leaves, soil, bark, moss, mushrooms, needles, pine cones, twigs/wood, and other plant matter) <ref>[https://www.biorxiv.org/content/10.1101/2021.07.13.452236v1 Substrate, temperature, and geographical patterns among nearly 2,000 natural yeast isolates. William J. Spurley, Kaitlin J. Fisher, Quinn K. Langdon, Kelly V. Buh, Martin Jarzyna, Max A. B. Haase, Kayla Sylvester, Ryan V. Moriarty, Daniel Rodriguez, Angela Sheddan, Sarah Wright, Lisa Sorlie, Amanda Beth Hulfachor, Dana A. Opulente, Chris Todd Hittinger. bioRxiv 2021.07.13.452236; doi: https://doi.org/10.1101/2021.07.13.452236.]</ref>. It is also thought to disperse via fruit-flies (called "vectors" in the scientific literature), similar to how ''Saccharomyces'' travels, although direct evidence for this has only been reported rarely and only on fruit-flies in wineries that are likely to come into contact with equipment/food/waste that is already contaminated with ''Brettanomyces'' <ref>[https://youtu.be/G2nhUM5PIrg?t=309 Dr. Bryan Heit. BotB - Where (Do) The Wild Brettanomyces Roam?. ~5 mins in. Retrieved 07/10/2022.]</ref><ref name="Renouf_2007" /><ref name="Steensels">[http://www.sciencedirect.com/science/article/pii/S0168160515001865 Brettanomyces yeasts — From spoilage organisms to valuable contributors to industrial fermentations. Jan Steensels, Luk Daenen, Philippe Malcorps, Guy Derdelinckx, Hubert Verachtert, Kevin J. Verstrepen. International Journal of Food Microbiology Volume 206, 3 August 2015, Pages 24–38.]</ref><ref name="Barata_2008" /><ref name="Loureiro_2003" />. ''Brettanomyces'' is known to be difficult to grow in a lab due to slow growth, specific nutrient requirements, or perhaps because of a "VBNC" state (see [[Wild_Yeast_Isolation#Wild_Brettanomyces|Wild ''Brettanomyces'']] for more information), which may account for the lack of evidence for fruit being the primary natural habitat for ''Brettanomyces''. More recently, techniques have been invented to more easily isolate and grow ''Brettanomyces'' <ref name="Renouf_2007" /><ref name="Comitini" />. There is also significant evidence that the natural habitat of ''Brettanomyces'' might actually be the root systems of certain plants, known as the [https://www.nature.com/scitable/knowledge/library/the-rhizosphere-roots-soil-and-67500617/ "rhizosphere"]. The rhizosphere refers to the complex symbiotic community of microbe populations that live on or around the root system of plants. Wild strains of ''Brettanomyces'' have been found in the root systems of dill, common beans, sunflowers, maize, corn, jute, cassava, and grey mangroves found in the estuaries of Indonesia <ref>[https://onlinelibrary.wiley.com/doi/abs/10.1111/aab.12309 Weisany, W., Raei, Y., Salmasi, S., Sohrabi, Y. and Ghassemi-Golezani, K. (2016), Arbuscular mycorrhizal fungi induced changes in rhizosphere, essential oil and mineral nutrients uptake in dill/common bean intercropping system. Ann Appl Biol, 169: 384-397. https://doi.org/10.1111/aab.12309.]</ref><ref>[https://archive.aessweb.com/index.php/5003/article/view/3333 I.O, S. ., & G.P, O. . (2012). Diversity of Fungal Populations in Soils Cultivated With Cassava Cultivar TMS 98/0505. Journal of Asian Scientific Research, 2(3), 116–123. Retrieved from https://archive.aessweb.com/index.php/5003/article/view/3333.]</ref><ref>[https://www.ajol.info/index.php/swj/article/view/149513 Rhizosphere and non-rhizosphere soil mycoflora of Corchorus olitorius (Jute). G.S. Olahan, I.O. Sule, T Garuba, Y.A. Salawu. Science World Journal. 2016.]</ref><ref>[https://ojs.unud.ac.id/index.php/jbb/article/view/36023 NOERFITRYANI, Noerfitryani; HAMZAH, Hamzah. THE EXISTENCE OF ENTOMOPATHOGENIC FUNGI ON RICE PLANTS RHIZOSPHERE. International Journal of Biosciences and Biotechnology, p. 12-24, dec. 2017. ISSN 2655-9994. doi: https://doi.org/10.24843/IJBB.2017.v05.i01.p02.]</ref><ref>[https://www.sciencedirect.com/science/article/abs/pii/S2452219818300259 Marcela Sarabia, Saila Cazares, Antonio González-Rodríguez, Francisco Mora, Yazmín Carreón-Abud, John Larsen, Plant growth promotion traits of rhizosphere yeasts and their response to soil characteristics and crop cycle in maize agroecosystems, Rhizosphere, Volume 6, 2018, Pages 67-73, ISSN 2452-2198, https://doi.org/10.1016/j.rhisph.2018.04.002.]</ref><ref>[https://www.sciencedirect.com/science/article/abs/pii/S1049964419303238 Nivien A. Nafady, Mohamed Hashem, Elhagag A. Hassan, Hoda A.M. Ahmed, Saad A. Alamri. The combined effect of arbuscular mycorrhizae and plant-growth-promoting yeast improves sunflower defense against Macrophomina phaseolina diseases. Biological Control. Volume 138, 2019, 104049. ISSN 1049-9644, https://doi.org/10.1016/j.biocontrol.2019.104049.]</ref><ref>[http://ejurnal.its.ac.id/index.php/sains_seni/article/view/5613 Isolation and Characterization of Yeast from Rhizosphere Avicennia Marina Wonorejo. Sitatun Zunaidah, Nur Hidayatul Alami. 2014. DOI: 10.12962/j23373520.v3i1.5613.]</ref>. See Dr. Bryan Heit's video [https://www.youtube.com/watch?v=G2nhUM5PIrg "Where (Do) The Wild Brettanomyces Roam?"] and [https://www.facebook.com/groups/MilkTheFunk/posts/5940213029340195 his comments in Milk The Funk], as well as [https://www.youtube.com/watch?v=BrR7G_YyfmA "Philip Poole. Plant Control of the Rhizosphere Microbiome"]. For documented isolation attempts from plant rhizospheres, see [[Wild_Yeast_Isolation#Wild_Brettanomyces|Wild Yeast Isolation]].