13,703
edits
Changes
Hops
,no edit summary
|-
|}
'''Oxidized alpha acids''' (humulinones) are similar in taste perception to iso-α-acids, but have been described as less bitter (an average of about 66% as bitter on a 1 to 1 basis). The quality of the bitterness from oxidized alpha acids has been described in one study as "smoother and less lingering" than iso-alpha acids; this was attributed to humulinones being more polar than iso-alpha acids and therefore do not stick or linger on the tongue as long as iso-alpha acids <ref name="Shellhammer, Vollmer and Sharp, CBC 2015"/><ref name="Maye_2016" />. While the taste threshold of iso-alpha acids is 5-6 mg/L in light lager, the threshold for humulinones has been measured to be 8 mg/L in light lager (note that this is an average; tasters vary widely in how much bitterness they perceived from different bitter compounds) <ref name="Algazzali_2014" />. Humulinone content increases in hops after being pelletized (whole leaf hops have less humulinones). In fresh pellet hops that have a relatively low humulinone content, the humulinones contribute little to the bitterness of the beer when boiled, however when dry hopped they readily dissolve into the beer and have a significant impact on the beer's bitterness. With heavy dry hopping, the humulinones also decrease iso-alpha acid content of beer with more than about 25 IBU's, but not in beer with less than about 20 IBU. The decrease in iso-alpha acids and perceived bitterness/IBU is partially made up for the bitterness of the humulinones themselves (humulinones are picked up in IBU measurements with a [http://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Kinetics/Reaction_Rates/Experimental_Determination_of_Kinetcs/Spectrophotometry spectrophotometer] and as such it has been suggested that IBU's be [http://masterbrewerspodcast.com/004-dry-hopping-its-effects-on-bitterness-and-the-ibu-test-0 measured more accurately with HPLC]). In beers with less than 20 IBU, high dry hopping rates greatly increase the bitterness/IBU due to the bitter humulinones. The rate of humulinone formation is limiting, meaning that humulinone formation occurs rapidly during hop pelletization, and the concentration peaks during this time (researchers found that further exposure to air did not increase humulinone content). Scientists believe that this is because when whole leaf hops are baled, only 20% of lupulin glands are broken, whereas when they are pelletized 100% of the lupulin glands are broken. The exact mechanism by which alpha acids are converted to humulinones is not known <ref name="Maye_2016" />. Humulinone content in long-aged hops (1+ years) has not been studied.
====Oils====
[[File:Lam Hop Oils.jpg|thumb|400|[http://pubs.acs.org/doi/pdf/10.1021/jf00070a043 Data from "Aging of hops and their contribution to beer flavor" by Kai C. Lam, Robert T. Foster and Max L. Deinzer.] '''Aged I''': 2 weeks at 90°F; '''Aged II''': 60 additional days at 90°F.]]
Hop oils also generally degrade over time, however, their degradation rates are more complex. [http://pubs.acs.org/doi/abs/10.1021/jf00070a043 Lam et al. (1986)] found that aging both cascade and North American grown Hallertauer Mittelfrueh resulted in an increase in grapefruit-like character, although the compound that caused this was not identified. In the case of Cascade the intensity of this flavor correlated with the age of the hops <ref name="Lam et al., 1986"> [http://pubs.acs.org/doi/abs/10.1021/jf00070a043 Aging of Hops and Their Contribution to Beer Flavor. Lam et al. 1986.] </ref>. In the Hallertauer hops, aging resulted in an increase in a spicy/herbal character <ref name="Lam et al., 1986"/>, which is in agreement with reports of oxidized sesquiterpenes (specifically humulenol II, humulene diepoxides, caryophyllene, and to a lesser extent humulene monoepoxides and alpha-humulene) contributing a spicy/herbal flavor to beer <ref name="Goiris et al., 2002">[http://onlinelibrary.wiley.com/doi/10.1002/j.2050-0416.2002.tb00129.x/abstract Goiris et al., 2002]</ref><ref name="Mikyška_2012" />. Many of the oils followed in the Lam et al. (1986) study which increased during a short accelerated aging period (2 weeks at 90°F) then decreased during extended aging (60 additional days at 90°F). The cascade hops lost more of the fruity/citrusy hop oils (myrecene, linalool, and geranial) than Hallertauer, suggesting that different strains of hops can withstand aging better than others. The concentration of hop oils are affected by the brewing process and fermentation (see the table) <ref name="Lam et al., 1986"/>. Another study found that beta-ionone (classified as a ketone, and characterized as "floral" and "woody" <ref>[http://www.thegoodscentscompany.com/data/rw1006632.html Beta-ionone. Good Scents Company. Retrieved 11/22/2016.]</ref>) increased in beers brewed with hops that were aged for 30 days at 40°C versus beers brewed with aged hops <ref name="kishimoto_2007" />.