13,703
edits
Changes
no edit summary
Hammond also generated graphs for a 15 minute boil and a "0 minute" boil (wort heated to 100°C, then immediately cooled). These graphs are seen below:
[[File:DMS 15MinBoil.png|none|thumb|500px|SMM conversion to DMS during a 35 20 minute heat up, 15 minute boil at 100°C, and 60 minute cool down to 20°C. Graph created and provided by [https://www.facebook.com/mark.hammond.1253 Mark Hammond].]][[File:DMS 0MinBoil.png|none|thumb|500px|SMM conversion to DMS during a 35 20 minute heat up to boiling temperature (100°C), then immediate cooling for 60 minutes to 20°C ("0 minute" boil). Graph created and provided by [https://www.facebook.com/mark.hammond.1253 Mark Hammond].]]
In the case of the 15 minute boil, approximately 400 µg/L of SMM is converted into approximately 400 µg/L of DMS. During the boiling process, it could be assumed that much of the DMS is volatilized due to the boil. In the case of the "0 minute" boil, approximately 175 µg/L of SMM is converted into approximately 175 µg/L of DMS. DMS continues to volatilize below boiling temperatures (see [[Dimethyl_Sulfide#Volatility_of_DMS|DMS Volatility]]), so some evaporation of the created DMS will still occur in the "0 minute" example in an open cooling system.
For comparison sake, a graph of a 60 minute boil is shown below:
[[File:DMS 60Minute.png|none|thumb|500px|SMM conversion to DMS during a 35 20 minute heat up, 60 minute boil at 100°C, and 60 minute cool down to 20°C. Graph created and provided by [https://www.facebook.com/mark.hammond.1253 Mark Hammond].]]
===Kettle Souring and Effects of pH===