Changes

Jump to: navigation, search

Brettanomyces secondary fermentation experiment

133 bytes removed, 17:05, 3 December 2015
Metabolite Analysis
In general, we observed slightly elevated levels of ethyl esters with the addition of ''Brettanomyces'' (Figure 2). However, there was a high degree of variability among the different pitch rates. Identification and confirmation of trends with regard to ethyl ester production in this experiment would require multiple replicates in order to more accurately assess the data and identify trends. The most dramatic increases in ester production were seen with ethyl nonanoate (tropical fruit) and ethyl caprylate (pineapple) production.
Interestingly, we observed a potential dose-dependent decrease in isoamyl acetate (banana) concentration at 3 weeks (Figure 3). Therefore, higher pitch rates of ''Brettanomyces'' in secondary fermentation may metabolize isoamyl acetate faster, reducing the concentration of this ester. Thus, high pitch rates of ''Brettanomyces'' could be useful to quickly reduce isoamyl acetate in beers where this flavour is undesirable. We also observed a more subtle dose-dependent decrease in concentration of two other acetate esters at high ''Brettanomyces'' pitch rate, ethyl acetate (pear, solvent) and phenethyl acetate (honey, yeasty, floral) (Figures 3, 4). Interestingly, we observed higher concentration of these esters in the low pitch rate sample. Confirming this phenomenon and its potential sensory ramifications would require an expanded experimental design including replicates. Ultimately the differences are subtle, and it is likely that these do not have significant effects on the sensory character of the resultant beers. Concomitant with the slight reduction in acetate esters by addition of ''Brettanomyces'', we also observe slight increase in volatile acetic acid concentration with pitch rate (Figure 5), but the concentration regardless is well below the sensory threshold for acetic acid. Thus it is possible that acetate esters can be hydrolyzed by ''Brettanomyces'' under anaerobic conditions via an unknown mechanism. We await sampling at the 3 month timepoint to assess whether these trends continue and become more clear.
We were not able to identify any clear trends in levels of volatile organic acids (Figure 5). These compounds typically cause off-flavours in immature ''Brettanomyces'' fermentations.
===== Discussion =====
26
edits

Navigation menu