13,703
edits
Changes
Hops
,no edit summary
==Hop Derived Compounds In Beer and Biotransformations==
[[File:Svedlund 2022.jpg|thumb|400px|An overview of the biotransformation reactions occurring in yeast. Abbreviations: 3MH 3-mercaptohexanol, 3MHA 3-mercaptohexyl acetate, Cys cysteine, GSH glutathione, TPA terpene alcohol. Credit: Henrik Svedlund.
Source: [https://link.springer.com/article/10.1007/s00253-022-12068-w Svedlund, N., Evering, S., Gibson, B. et al. Fruits of their labour: biotransformation reactions of yeasts during brewery fermentation. Appl Microbiol Biotechnol 106, 4929–4944 (2022). https://doi.org/10.1007/s00253-022-12068-w]]]
The flavor and aroma compounds found in leaf/pellet hops are different than the hop-derived flavor and aroma compounds found in finished beer (other than in the case of dry hopping). The brewing process (particularly boiling), and fermentation greatly affect the composition of flavor and aroma compounds that are found in beer. For example, boiling wort and hops isomerizes non-bitter alpha acids into bitter iso-alpha acids. During the boiling of the wort, many compounds found in hops are evaporated, such as many of the various sulfur compounds found in hops. The terpene hydrocarbons which make up most of the hop oil content in hops (myrecene, humulene, and caryophyllene) are completely removed by fermentation. It is believed that these terpene hydrocarbons stick to the yeast cells and fall out of solution during fermentation <ref name="Praet_2012">[http://www.sciencedirect.com/science/article/pii/S1373716311001636 Biotransformations of hop-derived aroma compounds by Saccharomyces cerevisiae upon fermentation. Tatiana Praet, Filip Van Opstaele, Barbara Jaskula-Goiris, Guido Aerts, Luc De Cooman. 2012.]</ref>.