13,703
edits
Changes
→Acid Production
====Acid Production====
In the presence of oxygen and alcohol, ''Brettanomyces'' species produce acetic acid as a byproduct of glucose fermentation. The more oxygen that is present, the more acetic acid is produced and the less ethanol is produced by ''Brettanomyces'' <ref>[https://link.springer.com/article/10.1007/s00253-002-1197-z Brettanomyces bruxellensis: effect of oxygen on growth and acetic acid production. M. G. Aguilar Uscanga, M.L. Délia, P. Strehaiano. 2003.]</ref><ref>[https://escarpmentlabs.com/blogs/resources/how-to-choose-a-brett-strain-for-beer "How to Choose a Brett Strain," Escarpment Labs blog post, 01/20/21.]</ref>. In an environment with oxygen present, sugar is reduced to pyruvate within the cell and is then broken down into acetaldehyde which is then enzymatically oxidized into acetic acid or ethanol (dubbed the Custers effect). This is thought to be a defensive tactic against competing microorganisms (e.g. ''Brettanomyces'' has been shown to produce more acetic acid when co-fermented with ''S. cerevisiae'', and ''S. cerevisiae'' has been shown to have less viability over time in the presence of acetic acid and ethanol) <ref>[https://link.springer.com/article/10.1023/A:1022592810405 Production of acetic acid by Dekkera/Brettanomyces yeasts under conditions of constant pH. S.N. FreerB. DienS. Matsuda. 2003.]</ref><ref name="Hubbe"></ref>. Depending on the brewer's palate and the degree of acetic production, this can be a desirable or undesirable trait. The degree of acetic acid production varies among different ''Brettanomyces'' species and strains, and it is limited by limiting oxygen exposure (see [[Mixed_Fermentation#Aging|aging mixed fermentation beer]] for practical tips on limiting oxygen exposure). For example, ''B. naardenensis'' and ''B. custersianus'' produce less acetic acid than other species of ''Brettanomyces'' <ref name="colomer_2020_genome" /><ref name="Tiukova_2019" />. Acetic acid produced by ''Brettanomyces'' is also used in the synthesis of [[Brettanomyces#Ester_Production|acetate esters]] such as ethyl acetate, perhaps as a mechanism to protect itself after hindering other microbes via the acetic acid precursor. ''Brettanomyces'' has been shown to produce enough fatty acids in anaerobic fermentation to drop the pH to 4.0, which can also be esterified (see the ester table above) <ref name="yakobson1"></ref>. Many of these acids can have an unpleasant rancid odor and/or taste, which may be noticeable in young ''Brettanomyces'' beers before these acids are esterified. Some strains can also produce succinic acid as a byproduct of fermentation under semi-aerobic conditions, but not anaerobic conditions <ref name="Smith_2018" />. The production of acetic acid can vary between species of ''Brettanomyces''. For example, it has been reported that in the presence of oxygen ''B. naardenensis'' produces less acetic acid than ''B. bruxellensis'' <ref name="Tiukova_2019" />.
Michael Lentz and Chad Harris tested whether or not the hydroxycinnamic acids (HCAs) inhibit the growth of ''Brettanomyces''. They found that high levels of hydroxycinnamic acids (HCAs), which includes ferulic acid, p-coumaric acid, and caffeic acid, do inhibit the growth of ''Brettanomyces''. Ferulic acid is the strongest inhibitor of these three HCAs with most strains tested not being able to grow in wort that contained 12 mM (millimolar) of ferulic acid. Caffeic acid was generally shown to be the weakest inhibitor of the three HCAs tested. Levels of 25 mM p-coumaric acid inhibited the growth of all strains tested, and levels of 30 mM of caffeic acid inhibited all strains tested. The ability of HCAs to inhibit growth is different from strain to strain of ''Brettanomyces''. Inhibition does not appear to be species dependent. Some strains display a lag time and grow more slowly in the presence of high amounts of HCA's, but still eventually achieve maximum growth compared to if they were grown without exposure to HCAs, while others lag and then stop growing before reaching maximum growth <ref name="Lentz"></ref>.