13,703
edits
Changes
no edit summary
====Second Stage: Ethanol Production====
The second stage of spontaneous fermentation is dominated by ''Saccharomyces'' species (predominantly ''S. cerevisiae'', ''S. bayanus'', ''S. kudriavzevii'', and ''S. pastorianus'', the latter two species often being present towards the end of this phase in lambic due to the colder cellar temperatures during the winter season when lambic is made). ''Hanseniaspora uvarum'' has also been reported in some but not all lambic fermentations playing a major role in starting the second stage of spontaneous fermentation, which is characterized by ethanol production. Most of the attenuation is accomplished during this stage with the depletion of monosaccharides, disaccharides, and trisaccharides consumed in that order (glucose/fructose is consumed first by the ''S. cerevisiae'', and then maltose/maltotriose are gradually depleted until they are gone by the end of the second stage). Ethanol, methyl-1-butanol, and succinic acid are the main compounds produced during this stage for wort that has been pre-acidified. This stage lasts approximately 3-4 months. One study also found populations of ''Kazachsania'' yeast species and ''Cellulosimicrobium'' yeast species early on in the second stage <ref name="Roos_2018_2" /><ref name="Bongaerts_2021" />. In addition to the bulk of the overall ethanol production, this phase also sees the production of higher alcohols and the synthesis of esters, especially isoamyl acetate, as well as glycerol, caprylic acid, and capric acid <ref name="Van Oevelen et al., 1977" /><ref name="Roos_2018" />. It has been reported by some brewers that this stage might begin as early as 3-14 days and corresponds with a drop in pH below that of regular beer, indicating that the first stage for some spontaneous fermentations might be shorter and faster than reported in the other literature <ref>[http://www.spontanmanc.co.uk/?p=66 Zach Taylor of Chorlton Brewing Co. "The Lab Work Begins". Spontanmanc blog. 08/01/2018. Retrieved 08/29/2018.]</ref>. MTF members (both homebrewers and professionals) have observed yeast fermentation activity typically at 3-7 days <ref>[https://www.facebook.com/events/666424196868756/ Various MTF members. Milk the Funk - Collaboration Brew #3: Spontaneous. 05/01/2017. Retrieved 08/29/2018.]</ref><ref>[https://www.facebook.com/groups/MilkTheFunk/permalink/1571139996247542/?comment_id=1571597289535146 Raf Soef, James Howat, Levi Funk. Milk The Funk Facebook thread on how long it takes for yeast to start fermenting in a spontaneous fermentation. 2017.]</ref>. However, these reports are anecdotal based on visual fermentation and microbe analysis was not done in many cases. De Roos et al. (2018) reported that for wort that is pre-acidified to a pH of 4.5, and after an initial drop in pH to 3.8 by enterobacterial and acetic acid bacteria, the pH rose to 4.0 during the secondary fermentation phase, indicating that the yeast consumed some of the organic acids that were produced during the initial enterobacteria phase <ref name="Roos_2018_2" />.
The ''[[Saccharomyces]]'' dominated stage of fermentation is followed by prolonged and gradual acid and flavor development accompanied by the final points of attenuation, which lasts anywhere from 2 to 10 months <ref name="Roos_2018" />. In some descriptions this is split into an "acidification phase" which is dominated by lactic acid bacteria (LAB), primarily ''[[Pediococcus]]'' and sometimes ''[[Lactobacillus]]'', and a "maturation phase" driven by ''[[Brettanomyces]]'' <ref name="Van Oevelen et al., 1977" />. Other sources describe these as one extended maturation phase with acidification from ''Pediococcus'' and ''Brettanomyces'' growth occurring simultaneously <ref name="Spitaels et al., 2015" /><ref name="Bokulic et al., 2012" /><ref name="Spitaels et al., 2014" />. When the wort is pre-acidified, the acidification and maturation phases overlap <ref name="Roos_2018" />. Other yeasts such as ''Candida'', ''Cryptococcus'', and ''Torulopsis'' species have also been isolated from mature lambic, although their impact other than possibly being involved in the formation of a pellicle is unknown <ref>[https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2050-0416.1977.tb03825.x MICROBIOLOGICAL ASPECTS OF SPONTANEOUS WORT FERMENTATION IN THE PRODUCTION OF LAMBIC AND GUEUZE. D. Van Oevelen M. Spaepen P. Timmermans H. Verachtert. 1977. DOI: https://doi.org/10.1002/j.2050-0416.1977.tb03825.x.]</ref>. As many of the flavor and aroma characteristics that we associate with spontaneously fermented beer are produced during this slow maturation/acidification phase, allowing sufficient aging time is important when producing spontaneously fermented beers <ref name="Van Oevelen et al., 1976" /><ref name="Spaepen et al., 1978" />. Homebrewer Caleb Buck reported data on several batches of homebrewed spontaneously fermented beer and observed a slower drop in gravity for some batches than others over about a 7 month period (see [http://www.archaicpursuit.com/2018/08/2017-coolship-experiment-hopping-rate.html?m=1 this graph for details]). De Roos et al. (2018) reported a gradual increase in glucose, maltose, and maltotriose from week 7 to month 6 due to the degradation of maltooligosaccharides (higher chain sugars) <ref name="Roos_2018_2" />.